IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v307y2021i1d10.1007_s10479-021-04270-2.html
   My bibliography  Save this article

Estimating heterogeneous agent preferences by inverse optimization in a randomized nonatomic game

Author

Listed:
  • Sung-Pil Hong

    (Seoul National University)

  • Kyung Min Kim

    (Myongji University)

  • Suk-Joon Ko

    (SK Innovation Co., Ltd)

Abstract

We consider an externality game in which nonatomic agents choose from a finite set of alternatives and disutility is determined only by the number of agents choosing each alternative. The equilibrium is defined with respect to the agents’ choices so that taste heterogeneity, modeled through randomized parameters, can be estimated from collective choice data. The joint density of the taste parameters is computed by a biquadratic inverse optimization process that matches observed choices to the equilibrium condition associated with a set-valued best-response function, and hence imposes no prior assumptions on the taste parameters. The model is capacitated with disutility generalized into an arbitrary function that is continuous in attributes and measurable in taste parameters. The existence of an equilibrium under such a disutility model is established by observing that, in an externality game, the proposed aggregate equilibrium is actually equivalent to the agent-specific Nash equilibrium previously established by Schmeidler (J Stat Phys 7(4):295–300, 1973). In a comparison test on intensive metro route-choice data, we demonstrate that the proposed model is a good alternative to existing nongame choice models. An extended test also demonstrates the advantage of the general disutility model in describing agents choice behaviors in other contexts.

Suggested Citation

  • Sung-Pil Hong & Kyung Min Kim & Suk-Joon Ko, 2021. "Estimating heterogeneous agent preferences by inverse optimization in a randomized nonatomic game," Annals of Operations Research, Springer, vol. 307(1), pages 207-228, December.
  • Handle: RePEc:spr:annopr:v:307:y:2021:i:1:d:10.1007_s10479-021-04270-2
    DOI: 10.1007/s10479-021-04270-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04270-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04270-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Kim, Kyung Min & Hong, Sung-Pil & Ko, Suk-Joon & Kim, Dowon, 2015. "Does crowding affect the path choice of metro passengers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 292-304.
    3. Warren B. Powell & Yosef Sheffi, 1982. "The Convergence of Equilibrium Algorithms with Predetermined Step Sizes," Transportation Science, INFORMS, vol. 16(1), pages 45-55, February.
    4. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    5. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    6. Ravindra K. Ahuja & James B. Orlin, 2001. "Inverse Optimization," Operations Research, INFORMS, vol. 49(5), pages 771-783, October.
    7. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    8. Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.
    9. Fosgerau, Mogens, 2007. "Using nonparametrics to specify a model to measure the value of travel time," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 842-856, November.
    10. Mandel, Benedikt & Gaudry, Marc & Rothengatter, Werner, 1994. "Linear or nonlinear utility functions in logit models? The impact on German high-speed rail demand forecasts," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 91-101, April.
    11. Martin Fellendorf & Peter Vortisch, 2010. "Microscopic Traffic Flow Simulator VISSIM," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 63-93, Springer.
    12. Robert B. Dial, 1996. "Bicriterion Traffic Assignment: Basic Theory and Elementary Algorithms," Transportation Science, INFORMS, vol. 30(2), pages 93-111, May.
    13. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    14. Rainer Klump & Peter McAdam & Alpo Willman, 2007. "Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 183-192, February.
    15. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    17. Epstein, Larry G., 1988. "Risk aversion and asset prices," Journal of Monetary Economics, Elsevier, vol. 22(2), pages 179-192, September.
    18. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    19. Raveau, Sebastián & Muñoz, Juan Carlos & de Grange, Louis, 2011. "A topological route choice model for metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 138-147, February.
    20. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    21. Leurent, Fabien, 1993. "Cost versus time equilibrium over a network," European Journal of Operational Research, Elsevier, vol. 71(2), pages 205-221, December.
    22. Frédéric Meunier & Thomas Pradeau, 2019. "Computing solutions of the multiclass network equilibrium problem with affine cost functions," Annals of Operations Research, Springer, vol. 274(1), pages 447-469, March.
    23. Immanuel Bomze & Chen Ling & Liqun Qi & Xinzhen Zhang, 2012. "Standard bi-quadratic optimization problems and unconstrained polynomial reformulations," Journal of Global Optimization, Springer, vol. 52(4), pages 663-687, April.
    24. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.
    25. Stella C. Dafermos, 1972. "The Traffic Assignment Problem for Multiclass-User Transportation Networks," Transportation Science, INFORMS, vol. 6(1), pages 73-87, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.
    2. Xiyuan Ren & Joseph Y. J. Chow, 2023. "Nonparametric estimation of k-modal taste heterogeneity for group level agent-based mixed logit," Papers 2309.13159, arXiv.org.
    3. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    4. Berliant, Marcus, 2017. "Commuting and internet traffic congestion," MPRA Paper 77378, University Library of Munich, Germany.
    5. Wang, Judith Y.T. & Ehrgott, Matthias, 2013. "Modelling route choice behaviour in a tolled road network with a time surplus maximisation bi-objective user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 342-360.
    6. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2019. "Nonparametric estimation of the random coefficients model: An elastic net approach," Ruhr Economic Papers 824, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Jacquot, Paulin & Wan, Cheng, 2022. "Nonatomic aggregative games with infinitely many types," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1149-1165.
    8. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2019. "Nonparametric estimation of the random coefficients model: An elastic net approach," DICE Discussion Papers 326, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    9. Wen-Long Jin, 2015. "Advances in Dynamic Traffic Assgmnt: TAC," Networks and Spatial Economics, Springer, vol. 15(3), pages 617-634, September.
    10. Oran Richman & Nahum Shimkin, 2007. "Topological Uniqueness of the Nash Equilibrium for Selfish Routing with Atomic Users," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 215-232, February.
    11. Igal Milchtaich, 2005. "Topological Conditions for Uniqueness of Equilibrium in Networks," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 225-244, February.
    12. Damberg, Olof & Lundgren, Jan T. & Patriksson, Michael, 1996. "An algorithm for the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 30(2), pages 115-131, April.
    13. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun, 2008. "Multiclass multicriteria mixed equilibrium on networks and uniform link tolls for system optimum," European Journal of Operational Research, Elsevier, vol. 189(1), pages 146-158, August.
    14. Heiss, Florian & Hetzenecker, Stephan & Osterhaus, Maximilian, 2022. "Nonparametric estimation of the random coefficients model: An elastic net approach," Journal of Econometrics, Elsevier, vol. 229(2), pages 299-321.
    15. Leurent, Fabien M., 1997. "Curbing the computational difficulty of the logit equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 315-326, August.
    16. Allais, Olivier & Etilé, Fabrice & Lecocq, Sébastien, 2015. "Mandatory labels, taxes and market forces: An empirical evaluation of fat policies," Journal of Health Economics, Elsevier, vol. 43(C), pages 27-44.
    17. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    18. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    19. Ahipaşaoğlu, Selin Damla & Meskarian, Rudabeh & Magnanti, Thomas L. & Natarajan, Karthik, 2015. "Beyond normality: A cross moment-stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 333-354.
    20. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:307:y:2021:i:1:d:10.1007_s10479-021-04270-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.