IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v270y2018i1d10.1007_s10479-018-3024-7.html
   My bibliography  Save this article

Big data analytics in operations and supply chain management

Author

Listed:
  • Samuel Fosso Wamba

    (Toulouse Business School)

  • Angappa Gunasekaran

    (California State University, Bakersfield)

  • Rameshwar Dubey

    (Montpellier Research in Management)

  • Eric W. T. Ngai

    (The Hong Kong Polytechnic University)

Abstract

No abstract is available for this item.

Suggested Citation

  • Samuel Fosso Wamba & Angappa Gunasekaran & Rameshwar Dubey & Eric W. T. Ngai, 2018. "Big data analytics in operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 1-4, November.
  • Handle: RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-018-3024-7
    DOI: 10.1007/s10479-018-3024-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-3024-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-3024-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(10), pages 1671-1672, October.
    3. Nada R. Sanders & Ram Ganeshan, 2015. "Call for Papers: Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(6), pages 1028-1029, June.
    4. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(9), pages 1509-1510, September.
    5. Gunasekaran, Angappa & Papadopoulos, Thanos & Dubey, Rameshwar & Wamba, Samuel Fosso & Childe, Stephen J. & Hazen, Benjamin & Akter, Shahriar, 2017. "Big data and predictive analytics for supply chain and organizational performance," Journal of Business Research, Elsevier, vol. 70(C), pages 308-317.
    6. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    7. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(3), pages 519-520, March.
    8. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1371-1372, August.
    9. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(12), pages 1984-1985, December.
    10. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(11), pages 1835-1836, November.
    11. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(5), pages 852-853, May.
    12. Wamba, Samuel Fosso & Gunasekaran, Angappa & Akter, Shahriar & Ren, Steven Ji-fan & Dubey, Rameshwar & Childe, Stephen J., 2017. "Big data analytics and firm performance: Effects of dynamic capabilities," Journal of Business Research, Elsevier, vol. 70(C), pages 356-365.
    13. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(7), pages 1193-1194, July.
    14. Nada R. Sanders & Ram Ganeshan, 2015. "Special Issue of Production and Operations Management on “Big Data in Supply Chain Management”," Production and Operations Management, Production and Operations Management Society, vol. 24(4), pages 681-682, April.
    15. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    16. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepa Mishra & Angappa Gunasekaran & Thanos Papadopoulos & Stephen J. Childe, 2018. "Big Data and supply chain management: a review and bibliometric analysis," Annals of Operations Research, Springer, vol. 270(1), pages 313-336, November.
    2. Eric W. K. See-To & Eric W. T. Ngai, 2018. "Customer reviews for demand distribution and sales nowcasting: a big data approach," Annals of Operations Research, Springer, vol. 270(1), pages 415-431, November.
    3. Eva Labro & Mark Lang & Jim Omartian, 2019. "Predictive Analytics and Organizational Architecture: Plant-Level Evidence from Census Data," Working Papers 19-02, Center for Economic Studies, U.S. Census Bureau.
    4. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.
    5. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    6. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    7. Lidong Wang & Cheryl Ann Alexander, 2015. "Big Data Driven Supply Chain Management and Business Administration," American Journal of Economics and Business Administration, Science Publications, vol. 7(2), pages 60-67, June.
    8. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    9. Pan Liu & Shu-ping Yi, 2018. "A study on supply chain investment decision-making and coordination in the Big Data environment," Annals of Operations Research, Springer, vol. 270(1), pages 235-253, November.
    10. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    11. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    12. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.
    13. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    14. Morgan Swink & Kejia Hu & Xiande Zhao, 2022. "Analytics applications, limitations, and opportunities in restaurant supply chains," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3710-3726, October.
    15. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    17. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    18. Acciarini, Chiara & Cappa, Francesco & Boccardelli, Paolo & Oriani, Raffaele, 2023. "How can organizations leverage big data to innovate their business models? A systematic literature review," Technovation, Elsevier, vol. 123(C).
    19. Wamba, Samuel Fosso & Dubey, Rameshwar & Gunasekaran, Angappa & Akter, Shahriar, 2020. "The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism," International Journal of Production Economics, Elsevier, vol. 222(C).
    20. Biman Darshana Hettiarachchi & Stefan Seuring & Marcus Brandenburg, 2022. "Industry 4.0-driven operations and supply chains for the circular economy: a bibliometric analysis," Operations Management Research, Springer, vol. 15(3), pages 858-878, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-018-3024-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.