IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01996486.html
   My bibliography  Save this paper

Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain

Author

Listed:
  • Rameshwar Dubey

    (MRM - Montpellier Research in Management - UM1 - Université Montpellier 1 - Groupe Sup de Co Montpellier (GSCM) - Montpellier Business School - UPVM - Université Paul-Valéry - Montpellier 3 - UM - Université de Montpellier - UM2 - Université Montpellier 2 - Sciences et Techniques - UPVD - Université de Perpignan Via Domitia)

  • Angappa Gunasekaran

    (CSUB - California State University [Bakersfield])

  • Stephen Childe

    (University of Plymouth Business School)

  • David Roubaud

    (MRM - Montpellier Research in Management - UM1 - Université Montpellier 1 - Groupe Sup de Co Montpellier (GSCM) - Montpellier Business School - UPVM - Université Paul-Valéry - Montpellier 3 - UM - Université de Montpellier - UM2 - Université Montpellier 2 - Sciences et Techniques - UPVD - Université de Perpignan Via Domitia)

  • Samuel Fosso Wamba

    (Toulouse Business School)

  • Mihalis Giannakis

    (Audencia Business School - Audencia Business School)

  • Cyril Foropon

    (MRM - Montpellier Research in Management - UM1 - Université Montpellier 1 - Groupe Sup de Co Montpellier (GSCM) - Montpellier Business School - UPVM - Université Paul-Valéry - Montpellier 3 - UM - Université de Montpellier - UM2 - Université Montpellier 2 - Sciences et Techniques - UPVD - Université de Perpignan Via Domitia)

Abstract

The main objective of the study is to understand how big data analytics capability (BDAC) as an organizational culture can enhance trust and collaborative performance between civil and military organizations engaged in disaster relief operations. The theoretical framework is grounded in organizational information processing theory (OIPT). We have conceptualized an original theoretical model to show, using the competing value model (CVM), how BDAC, under a moderating influence of organizational culture, affects swift trust (ST) and collaborative performance (CP). We used WarpPLS 6.0 to test the proposed research hypotheses using multi-respondent data gathered through an email questionnaire sent to managers working in 373 organizations, including the military forces of different countries, government aid agencies, UN specialized agencies, international non-government organizations (NGOs), service providers, and contractors. The results offer four important implications. First, BDAC has a positive, significant effect on ST and CP. Second, flexible orientation (FO) and controlled orientation (CO) have no significant influence on building ST. Third, FO has a positive and significant moderating effect on the path joining BDAC and CP. Finally, CO has negative and significant moderating effect on the path joining BDAC and CP. The control variables: temporal orientation (TO) and interdependency (I) have significant effects on ST and CP. These results extend OIPT to create a better understanding of the application of information processing capabilities to build swift trust and improve collaborative performance. Furthermore, managers can derive multiple insights from this theoretically-grounded study to understand how BDAC can be exploited to gain insights in contexts of different management styles and cultures. We have also outlined the study limitations and provided numerous future research directions.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Rameshwar Dubey & Angappa Gunasekaran & Stephen Childe & David Roubaud & Samuel Fosso Wamba & Mihalis Giannakis & Cyril Foropon, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," Post-Print hal-01996486, HAL.
  • Handle: RePEc:hal:journl:hal-01996486
    DOI: 10.1016/j.ijpe.2019.01.023
    Note: View the original document on HAL open archive server: https://hal-audencia.archives-ouvertes.fr/hal-01996486
    as

    Download full text from publisher

    File URL: https://hal-audencia.archives-ouvertes.fr/hal-01996486/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ijpe.2019.01.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Sabari R. Prasanna & Ira Haavisto, 2018. "Collaboration in humanitarian supply chains: an organisational culture framework," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5611-5625, September.
    3. Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
    4. Nezih Altay & Raktim Pal, 2014. "Information Diffusion among Agents: Implications for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 1015-1027, June.
    5. Dowty, Rachel A. & Wallace, William A., 2010. "Implications of organizational culture for supply chain disruption and restoration," International Journal of Production Economics, Elsevier, vol. 126(1), pages 57-65, July.
    6. Bagozzi, Richard P. & Yi, Youjae & Nassen, Kent D., 1998. "Representation of measurement error in marketing variables: Review of approaches and extension to three-facet designs," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 393-421, November.
    7. Tatham, Peter & Kovács, Gyöngyi, 2010. "The application of "swift trust" to humanitarian logistics," International Journal of Production Economics, Elsevier, vol. 126(1), pages 35-45, July.
    8. Lucianetti, Lorenzo & Chiappetta Jabbour, Charbel Jose & Gunasekaran, Angappa & Latan, Hengky, 2018. "Contingency factors and complementary effects of adopting advanced manufacturing tools and managerial practices: Effects on organizational measurement systems and firms' performance," International Journal of Production Economics, Elsevier, vol. 200(C), pages 318-328.
    9. Dominik Eckstein & Matthias Goellner & Constantin Blome & Michael Henke, 2015. "The performance impact of supply chain agility and supply chain adaptability: the moderating effect of product complexity," International Journal of Production Research, Taylor & Francis Journals, vol. 53(10), pages 3028-3046, May.
    10. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    11. Boin, Arjen & Kelle, Peter & Clay Whybark, D., 2010. "Resilient supply chains for extreme situations: Outlining a new field of study," International Journal of Production Economics, Elsevier, vol. 126(1), pages 1-6, July.
    12. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    13. Gianmaria Bottoni, 2018. "A Multilevel Measurement Model of Social Cohesion," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 835-857, April.
    14. Armstrong, J. Scott & Overton, Terry S., 1977. "Estimating Nonresponse Bias in Mail Surveys," MPRA Paper 81694, University Library of Munich, Germany.
    15. Davis, Lauren B. & Samanlioglu, Funda & Qu, Xiuli & Root, Sarah, 2013. "Inventory planning and coordination in disaster relief efforts," International Journal of Production Economics, Elsevier, vol. 141(2), pages 561-573.
    16. Robert E. Quinn & John Rohrbaugh, 1983. "A Spatial Model of Effectiveness Criteria: Towards a Competing Values Approach to Organizational Analysis," Management Science, INFORMS, vol. 29(3), pages 363-377, March.
    17. Akter, Shahriar & Wamba, Samuel Fosso & Gunasekaran, Angappa & Dubey, Rameshwar & Childe, Stephen J., 2016. "How to improve firm performance using big data analytics capability and business strategy alignment?," International Journal of Production Economics, Elsevier, vol. 182(C), pages 113-131.
    18. Jay R. Galbraith, 1974. "Organization Design: An Information Processing View," Interfaces, INFORMS, vol. 4(3), pages 28-36, May.
    19. Fan, Huan & Li, Gang & Sun, Hongyi & Cheng, T.C.E., 2017. "An information processing perspective on supply chain risk management: Antecedents, mechanism, and consequences," International Journal of Production Economics, Elsevier, vol. 185(C), pages 63-75.
    20. Eero Vaara & Janne Tienari, 2011. "On the Narrative Construction of Multinational Corporations: An Antenarrative Analysis of Legitimation and Resistance in a Cross-Border Merger," Organization Science, INFORMS, vol. 22(2), pages 370-390, April.
    21. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    22. Marijn Janssen & JinKyu Lee & Nitesh Bharosa & Anthony Cresswell, 2010. "Advances in multi-agency disaster management: Key elements in disaster research," Information Systems Frontiers, Springer, vol. 12(1), pages 1-7, March.
    23. Ravi Srinivasan & Morgan Swink, 2018. "An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1849-1867, October.
    24. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Hazen, Benjamin & Giannakis, Mihalis & Roubaud, David, 2017. "Examining the effect of external pressures and organizational culture on shaping performance measurement systems (PMS) for sustainability benchmarking: Some empirical findings," International Journal of Production Economics, Elsevier, vol. 193(C), pages 63-76.
    25. David Xiaosong Peng & Gregory R. Heim & Debasish N. Mallick, 2014. "Collaborative Product Development: The Effect of Project Complexity on the Use of Information Technology Tools and New Product Development Practices," Production and Operations Management, Production and Operations Management Society, vol. 23(8), pages 1421-1438, August.
    26. Fawcett, Stanley E. & Jones, Stephen L. & Fawcett, Amydee M., 2012. "Supply chain trust: The catalyst for collaborative innovation," Business Horizons, Elsevier, vol. 55(2), pages 163-178.
    27. Wamba, Samuel Fosso & Gunasekaran, Angappa & Akter, Shahriar & Ren, Steven Ji-fan & Dubey, Rameshwar & Childe, Stephen J., 2017. "Big data analytics and firm performance: Effects of dynamic capabilities," Journal of Business Research, Elsevier, vol. 70(C), pages 356-365.
    28. Mohammad Moshtari, 2016. "Inter-Organizational Fit, Relationship Management Capability, and Collaborative Performance within a Humanitarian Setting," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1542-1557, September.
    29. Özlem Ergun & Luyi Gui & Jessica L. Heier Stamm & Pinar Keskinocak & Julie Swann, 2014. "Improving Humanitarian Operations through Technology-Enabled Collaboration," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 1002-1014, June.
    30. Sarstedt, Marko & Hair, Joseph F. & Ringle, Christian M. & Thiele, Kai O. & Gudergan, Siegfried P., 2016. "Estimation issues with PLS and CBSEM: Where the bias lies!," Journal of Business Research, Elsevier, vol. 69(10), pages 3998-4010.
    31. Oloruntoba, Richard, 2010. "An analysis of the Cyclone Larry emergency relief chain: Some key success factors," International Journal of Production Economics, Elsevier, vol. 126(1), pages 85-101, July.
    32. Ranjay Gulati & Phanish Puranam & Michael Tushman, 2012. "Meta‐organization design: Rethinking design in interorganizational and community contexts," Strategic Management Journal, Wiley Blackwell, vol. 33(6), pages 571-586, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 0. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 0, pages 1-54.
    2. Akter, Shahriar & Gunasekaran, Angappa & Wamba, Samuel Fosso & Babu, Mujahid Mohiuddin & Hani, Umme, 2020. "Reshaping competitive advantages with analytics capabilities in service systems," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    3. Zanon, Lucas Gabriel & Marcelloni, Francesco & Gerolamo, Mateus Cecílio & Ribeiro Carpinetti, Luiz Cesar, 2021. "Exploring the relations between supply chain performance and organizational culture: A fuzzy grey group decision model," International Journal of Production Economics, Elsevier, vol. 233(C).
    4. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    5. Amit Kumar Gupta & Narain Gupta, 2019. "Innovation and Culture as a Dynamic Capability for Firm Performance: A Study from Emerging Markets," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(4), pages 323-336, December.
    6. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    7. Benzidia, Smail & Makaoui, Naouel & Bentahar, Omar, 2021. "The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    8. Yang, Miying & Fu, Mingtao & Zhang, Zihan, 2021. "The adoption of digital technologies in supply chains: Drivers, process and impact," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    9. Diehlmann, Florian & Klein, Miriam & Wiens, Marcus & Lüttenberg, Markus & Schultmann, Frank, 2020. "On the value of accurate demand information in public-private emergency collaborations," Working Paper Series in Production and Energy 51, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    10. Wamba, Samuel Fosso & Dubey, Rameshwar & Gunasekaran, Angappa & Akter, Shahriar, 2020. "The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism," International Journal of Production Economics, Elsevier, vol. 222(C).
    11. Orji, Ifeyinwa Juliet & Kusi-Sarpong, Simonov & Huang, Shuangfa & Vazquez-Brust, Diego, 2020. "Evaluating the factors that influence blockchain adoption in the freight logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    12. Samuel Fosso Wamba, 0. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 0, pages 1-27.
    13. Waqar Ahmed & Muhammad Saeed Ashraf & Sharfuddin Ahmed Khan & Simonov Kusi-Sarpong & Francis Kow Arhin & Horsten Kusi-Sarpong & Arsalan Najmi, 2020. "Analyzing the impact of environmental collaboration among supply chain stakeholders on a firm’s sustainable performance," Operations Management Research, Springer, vol. 13(1), pages 4-21, June.
    14. Rameshwar Dubey & Angappa Gunasekaran & Thanos Papadopoulos, 2019. "Disaster relief operations: past, present and future," Annals of Operations Research, Springer, vol. 283(1), pages 1-8, December.
    15. Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
    16. Martínez-Caro, Eva & Cegarra-Navarro, Juan Gabriel & Alfonso-Ruiz, Francisco Javier, 2020. "Digital technologies and firm performance: The role of digital organisational culture," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    17. Abdurrezzak Sener & Mehmet Barut & Ali Dag & Mehmet Bayram Yildirim, 2021. "Impact of commitment, information sharing, and information usage on supplier performance: a Bayesian belief network approach," Annals of Operations Research, Springer, vol. 303(1), pages 125-158, August.
    18. Vrontis, Demetris & Basile, Gianpaolo & Simona Andreano, M. & Mazzitelli, Andrea & Papasolomou, Ioanna, 2020. "The profile of innovation driven Italian SMEs and the relationship between the firms’ networking abilities and dynamic capabilities," Journal of Business Research, Elsevier, vol. 114(C), pages 313-324.
    19. Fournier, Pierre-Luc & Chênevert, Denis & Jobin, Marie-Hélène, 2021. "The antecedents of physicians’ behavioral support for lean in healthcare: The mediating role of commitment to organizational change," International Journal of Production Economics, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Luo, Zongwei & Wamba, Samuel Fosso & Roubaud, David, 2019. "Can big data and predictive analytics improve social and environmental sustainability?," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 534-545.
    2. Wamba, Samuel Fosso & Dubey, Rameshwar & Gunasekaran, Angappa & Akter, Shahriar, 2020. "The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism," International Journal of Production Economics, Elsevier, vol. 222(C).
    3. Rameshwar Dubey & Nezih Altay & Constantin Blome, 2019. "Swift trust and commitment: The missing links for humanitarian supply chain coordination?," Annals of Operations Research, Springer, vol. 283(1), pages 159-177, December.
    4. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    5. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    6. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    7. Lijo John & Anand Gurumurthy & Gunjan Soni & Vipul Jain, 2019. "Modelling the inter-relationship between factors affecting coordination in a humanitarian supply chain: a case of Chennai flood relief," Annals of Operations Research, Springer, vol. 283(1), pages 1227-1258, December.
    8. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
    9. Qaisar Ali & Hakimah Yaacob & Shazia Parveen & Zaki Zaini, 2021. "Big data and predictive analytics to optimise social and environmental performance of Islamic banks," Environment Systems and Decisions, Springer, vol. 41(4), pages 616-632, December.
    10. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    11. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    12. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 0. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 0, pages 1-54.
    13. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    14. Bag, Surajit & Gupta, Shivam & Kumar, Sameer, 2021. "Industry 4.0 adoption and 10R advance manufacturing capabilities for sustainable development," International Journal of Production Economics, Elsevier, vol. 231(C).
    15. Samuel Fosso Wamba & Angappa Gunasekaran & Rameshwar Dubey & Eric W. T. Ngai, 2018. "Big data analytics in operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 1-4, November.
    16. Pan Liu & Shu-ping Yi, 2018. "A study on supply chain investment decision-making and coordination in the Big Data environment," Annals of Operations Research, Springer, vol. 270(1), pages 235-253, November.
    17. Hazen, Benjamin T. & Weigel, Fred K. & Ezell, Jeremy D. & Boehmke, Bradley C. & Bradley, Randy V., 2017. "Toward understanding outcomes associated with data quality improvement," International Journal of Production Economics, Elsevier, vol. 193(C), pages 737-747.
    18. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    19. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    20. Pan Liu & Shu-ping Yi, 2018. "Investment decision-making and coordination of a three-stage supply chain considering Data Company in the Big Data era," Annals of Operations Research, Springer, vol. 270(1), pages 255-271, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01996486. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.