IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v211y2013i1p473-48010.1007-s10479-013-1481-6.html
   My bibliography  Save this article

Research on permutation flow shop scheduling problems with general position-dependent learning effects

Author

Listed:
  • Lin-Hui Sun
  • Kai Cui
  • Ju-Hong Chen
  • Jun Wang
  • Xian-Chen He

Abstract

Machine learning exists in many realistic scheduling situations. This study focuses on permutation flow shop scheduling problems, where the actual processing time of a job is defined by a general non-increasing function of its scheduled position, i.e., general position-dependent learning effects. The objective functions are to minimize the total completion time, the makespan, the total weighted completion time, and the total weighted discounted completion time, respectively. To solve these problems, we present approximation algorithms based on the optimal permutations for the corresponding single machine scheduling problems and analyze their worst-case error bound. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.
  • Handle: RePEc:spr:annopr:v:211:y:2013:i:1:p:473-480:10.1007/s10479-013-1481-6
    DOI: 10.1007/s10479-013-1481-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1481-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1481-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.
    2. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    3. Fehmi Tanrisever & Erhan Kutanoglu, 2008. "Forming and scheduling jobs with capacitated containers in semiconductor manufacturing: Single machine problem," Annals of Operations Research, Springer, vol. 159(1), pages 5-24, March.
    4. Evgeny Shchepin & Nodari Vakhania, 2008. "On the geometry, preemptions and complexity of multiprocessor and shop scheduling," Annals of Operations Research, Springer, vol. 159(1), pages 183-213, March.
    5. Evgeny Gafarov & Alexander Lazarev & Frank Werner, 2013. "Single machine total tardiness maximization problems: complexity and algorithms," Annals of Operations Research, Springer, vol. 207(1), pages 121-136, August.
    6. Kjetil Fagerholt & Lars Hvattum & Trond Johnsen & Jarl Korsvik, 2013. "Routing and scheduling in project shipping," Annals of Operations Research, Springer, vol. 207(1), pages 67-81, August.
    7. Kailiang Xu & Zuren Feng & Liangjun Ke, 2011. "Single machine scheduling with total tardiness criterion and convex controllable processing times," Annals of Operations Research, Springer, vol. 186(1), pages 383-391, June.
    8. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    9. Hoksung Yau & Leyuan Shi, 2009. "Nested partitions for the large-scale extended job shop scheduling problem," Annals of Operations Research, Springer, vol. 168(1), pages 23-39, April.
    10. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    11. Smutnicki, Czeslaw, 1998. "Some results of the worst-case analysis for flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 109(1), pages 66-87, August.
    12. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    13. Chin-Chia Wu & Yunqiang Yin & Wen-Hsiang Wu & Shuenn-Ren Cheng, 2012. "Some polynomial solvable single-machine scheduling problems with a truncation sum-of-processing-times-based learning effect," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 6(4), pages 441-453.
    14. Wu, Chin-Chia & Lee, Wen-Chiung, 2009. "A note on the total completion time problem in a permutation flowshop with a learning effect," European Journal of Operational Research, Elsevier, vol. 192(1), pages 343-347, January.
    15. Liji Shen & Lars Mönch & Udo Buscher, 2013. "An iterative approach for the serial batching problem with parallel machines and job families," Annals of Operations Research, Springer, vol. 206(1), pages 425-448, July.
    16. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Some results of the worst-case analysis for flow shop scheduling with a learning effect," Annals of Operations Research, Springer, vol. 211(1), pages 481-490, December.
    17. J-B Wang & M-Z Wang, 2012. "Worst-case analysis for flow shop scheduling problems with an exponential learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 130-137, January.
    18. Xu, Zhiyong & Sun, Linyan & Gong, Juntao, 2008. "Worst-case analysis for flow shop scheduling with a learning effect," International Journal of Production Economics, Elsevier, vol. 113(2), pages 748-753, June.
    19. Carlos Mencía & María Sierra & Ramiro Varela, 2013. "Depth-first heuristic search for the job shop scheduling problem," Annals of Operations Research, Springer, vol. 206(1), pages 265-296, July.
    20. Adam Janiak & Mikhail Kovalyov & Maciej Lichtenstein, 2013. "Strong NP-hardness of scheduling problems with learning or aging effect," Annals of Operations Research, Springer, vol. 206(1), pages 577-583, July.
    21. Kangbok Lee & Joseph Leung & Michael Pinedo, 2013. "Makespan minimization in online scheduling with machine eligibility," Annals of Operations Research, Springer, vol. 204(1), pages 189-222, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    2. Xinyu Sun & Xin-Na Geng & Tao Liu, 2020. "Due-window assignment scheduling in the proportionate flow shop setting," Annals of Operations Research, Springer, vol. 292(1), pages 113-131, September.
    3. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    4. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    5. Lu Liu & Jian-Jun Wang & Xiao-Yuan Wang, 2016. "Single machine due-window assignment scheduling with resource-dependent processing times to minimise total resource consumption cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1186-1195, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Some results of the worst-case analysis for flow shop scheduling with a learning effect," Annals of Operations Research, Springer, vol. 211(1), pages 481-490, December.
    2. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    3. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    4. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    5. Adam Janiak & Mikhail Kovalyov & Maciej Lichtenstein, 2013. "Strong NP-hardness of scheduling problems with learning or aging effect," Annals of Operations Research, Springer, vol. 206(1), pages 577-583, July.
    6. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    7. Lu Liu & Jian-Jun Wang & Xiao-Yuan Wang, 2016. "Single machine due-window assignment scheduling with resource-dependent processing times to minimise total resource consumption cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1186-1195, February.
    8. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
    9. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.
    10. Zhongyi Jiang & Fangfang Chen & Xiandong Zhang, 2022. "Single-machine scheduling problems with general truncated sum-of-actual-processing-time-based learning effect," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 116-139, January.
    11. Zhang Xingong & Wang Yong & Bai Shikun, 2016. "Single-machine group scheduling problems with deteriorating and learning effect," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2402-2410, July.
    12. Zhe Zhang & Xiaoling Song & Huijun Huang & Yong Yin & Benjamin Lev, 2022. "Scheduling problem in seru production system considering DeJong’s learning effect and job splitting," Annals of Operations Research, Springer, vol. 312(2), pages 1119-1141, May.
    13. Cheng, T.C.E. & Wu, Chin-Chia & Chen, Juei-Chao & Wu, Wen-Hsiang & Cheng, Shuenn-Ren, 2013. "Two-machine flowshop scheduling with a truncated learning function to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 141(1), pages 79-86.
    14. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    15. Baruch Mor, 2022. "Minmax common flow-allowance problems with convex resource allocation and position-dependent workloads," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 79-97, January.
    16. Radosław Rudek, 2017. "Parallel machine scheduling with general sum of processing time based models," Journal of Global Optimization, Springer, vol. 68(4), pages 799-814, August.
    17. Cheng, Bayi & Zhu, Huijun & Li, Kai & Li, Yongjun, 2019. "Optimization of batch operations with a truncated batch-position-based learning effect," Omega, Elsevier, vol. 85(C), pages 134-143.
    18. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    19. Anzanello, Michel J. & Fogliatto, Flavio S. & Santos, Luana, 2014. "Learning dependent job scheduling in mass customized scenarios considering ergonomic factors," International Journal of Production Economics, Elsevier, vol. 154(C), pages 136-145.
    20. Xingong Zhang & Guangle Yan & Wanzhen Huang & Guochun Tang, 2011. "Single-machine scheduling problems with time and position dependent processing times," Annals of Operations Research, Springer, vol. 186(1), pages 345-356, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:211:y:2013:i:1:p:473-480:10.1007/s10479-013-1481-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.