IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v186y2011i1p383-39110.1007-s10479-010-0827-6.html
   My bibliography  Save this article

Single machine scheduling with total tardiness criterion and convex controllable processing times

Author

Listed:
  • Kailiang Xu
  • Zuren Feng
  • Liangjun Ke

Abstract

We consider a single machine scheduling problem with total tardiness criteria and controllable job-processing times specified by a convex resource consumption function. The objective is to have the total tardiness limited into a given range, and minimize the total resource consumption. A polynomial time algorithm of O(n 2 ) is presented for the special case where jobs have a common due date. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Kailiang Xu & Zuren Feng & Liangjun Ke, 2011. "Single machine scheduling with total tardiness criterion and convex controllable processing times," Annals of Operations Research, Springer, vol. 186(1), pages 383-391, June.
  • Handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:383-391:10.1007/s10479-010-0827-6
    DOI: 10.1007/s10479-010-0827-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0827-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0827-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianzhong Du & Joseph Y.-T. Leung, 1990. "Minimizing Total Tardiness on One Machine is NP-Hard," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 483-495, August.
    2. Shabtay, Dvir & Kaspi, Moshe, 2006. "Parallel machine scheduling with a convex resource consumption function," European Journal of Operational Research, Elsevier, vol. 173(1), pages 92-107, August.
    3. Clyde L. Monma & Alexander Schrijver & Michael J. Todd & Victor K. Wei, 1990. "Convex Resource Allocation Problems on Directed Acyclic Graphs: Duality, Complexity, Special Cases, and Extensions," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 736-748, November.
    4. Kailiang Xu & Zuren Feng & Liangjun Ke, 2010. "A branch and bound algorithm for scheduling jobs with controllable processing times on a single machine to meet due dates," Annals of Operations Research, Springer, vol. 181(1), pages 303-324, December.
    5. R. G. Vickson, 1980. "Choosing the Job Sequence and Processing Times to Minimize Total Processing Plus Flow Cost on a Single Machine," Operations Research, INFORMS, vol. 28(5), pages 1155-1167, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrasco, Rodrigo A. & Iyengar, Garud & Stein, Cliff, 2018. "Resource cost aware scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 621-632.
    2. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Some results of the worst-case analysis for flow shop scheduling with a learning effect," Annals of Operations Research, Springer, vol. 211(1), pages 481-490, December.
    3. Lin-Hui Sun & Kai Cui & Ju-Hong Chen & Jun Wang & Xian-Chen He, 2013. "Research on permutation flow shop scheduling problems with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 211(1), pages 473-480, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung-Cheon Choi & Myoung-Ju Park, 2022. "Single-machine scheduling with resource-dependent processing times and multiple unavailability periods," Journal of Scheduling, Springer, vol. 25(2), pages 191-202, April.
    2. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    3. Lu Liu & Jian-Jun Wang & Xiao-Yuan Wang, 2016. "Single machine due-window assignment scheduling with resource-dependent processing times to minimise total resource consumption cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1186-1195, February.
    4. Selvi, Omer & Gokbayrak, Kagan, 2010. "A search method for optimal control of a flow shop system of traditional machines," European Journal of Operational Research, Elsevier, vol. 205(2), pages 325-331, September.
    5. Bahram Alidaee & Haibo Wang & R. Bryan Kethley & Frank Landram, 2019. "A unified view of parallel machine scheduling with interdependent processing rates," Journal of Scheduling, Springer, vol. 22(5), pages 499-515, October.
    6. Carrasco, Rodrigo A. & Iyengar, Garud & Stein, Cliff, 2018. "Resource cost aware scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 621-632.
    7. Oron, Daniel & Shabtay, Dvir & Steiner, George, 2017. "Approximation algorithms for the workload partition problem and applications to scheduling with variable processing times," European Journal of Operational Research, Elsevier, vol. 256(2), pages 384-391.
    8. Yim, Seho & Hong, Sung-Pil & Park, Myoung-Ju & Chung, Yerim, 2022. "Inverse interval scheduling via reduction on a single machine," European Journal of Operational Research, Elsevier, vol. 303(2), pages 541-549.
    9. Kailiang Xu & Zuren Feng & Liangjun Ke, 2010. "A branch and bound algorithm for scheduling jobs with controllable processing times on a single machine to meet due dates," Annals of Operations Research, Springer, vol. 181(1), pages 303-324, December.
    10. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
    11. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    12. Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
    13. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    14. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    15. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    16. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    17. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    18. Shabtay, Dvir, 2022. "Single-machine scheduling with machine unavailability periods and resource dependent processing times," European Journal of Operational Research, Elsevier, vol. 296(2), pages 423-439.
    19. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    20. Chung‐Lun Li & Edward C. Sewell & T. C. E. Cheng, 1995. "Scheduling to minimize release‐time resource consumption and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 949-966, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:383-391:10.1007/s10479-010-0827-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.