IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v145y2006i1p129-14710.1007-s10479-006-0029-4.html
   My bibliography  Save this article

Zero weights and non-zero slacks: Different solutions to the same problem

Author

Listed:
  • Maria Portela
  • Emmanuel Thanassoulis

Abstract

This paper re-assesses three independently developed approaches that are aimed at solving the problem of zero-weights or non-zero slacks in Data Envelopment Analysis (DEA). The methods are weights restricted, non-radial and extended facet DEA models. Weights restricted DEA models are dual to envelopment DEA models with restrictions on the dual variables (DEA weights) aimed at avoiding zero values for those weights; non-radial DEA models are envelopment models which avoid non-zero slacks in the input-output constraints. Finally, extended facet DEA models recognize that only projections on facets of full dimension correspond to well defined rates of substitution/transformation between all inputs/outputs which in turn correspond to non-zero weights in the multiplier version of the DEA model. We demonstrate how these methods are equivalent, not only in their aim but also in the solutions they yield. In addition, we show that the aforementioned methods modify the production frontier by extending existing facets or creating unobserved facets. Further we propose a new approach that uses weight restrictions to extend existing facets. This approach has some advantages in computational terms, because extended facet models normally make use of mixed integer programming models, which are computationally demanding. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Maria Portela & Emmanuel Thanassoulis, 2006. "Zero weights and non-zero slacks: Different solutions to the same problem," Annals of Operations Research, Springer, vol. 145(1), pages 129-147, July.
  • Handle: RePEc:spr:annopr:v:145:y:2006:i:1:p:129-147:10.1007/s10479-006-0029-4
    DOI: 10.1007/s10479-006-0029-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0029-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0029-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bessent & W. Bessent & J. Elam & T. Clark, 1988. "Efficiency Frontier Determination by Constrained Facet Analysis," Operations Research, INFORMS, vol. 36(5), pages 785-796, October.
    2. Cooper, W. W. & Tone, K., 1997. "Measures of inefficiency in data envelopment analysis and stochastic frontier estimation," European Journal of Operational Research, Elsevier, vol. 99(1), pages 72-88, May.
    3. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    4. Brockett, P. L. & Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1997. "Data transformations in DEA cone ratio envelopment approaches for monitoring bank performances," European Journal of Operational Research, Elsevier, vol. 98(2), pages 250-268, April.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Russell G. Thompson & F. D. Singleton & Robert M. Thrall & Barton A. Smith, 1986. "Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas," Interfaces, INFORMS, vol. 16(6), pages 35-49, December.
    7. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    8. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    9. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    10. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    11. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    12. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    15. Ole Olesen & N. Petersen, 2003. "Identification and Use of Efficient Faces and Facets in DEA," Journal of Productivity Analysis, Springer, vol. 20(3), pages 323-360, November.
    16. E. Thanassoulis & R. Allen, 1998. "Simulating Weights Restrictions in Data Envelopment Analysis by Means of Unobserved DMUs," Management Science, INFORMS, vol. 44(4), pages 586-594, April.
    17. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    18. Allen, R. & Thanassoulis, E., 2004. "Improving envelopment in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 363-379, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sami El-Mahgary & Petri Rönnholm & Hannu Hyyppä & Henrik Haggrén & Jenni Koponen, 2014. "Evaluating the performance of university course units using data envelopment analysis," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-20, December.
    2. Baltzer, Kenneth & Kløverpris, Jesper, 2008. "Improving the land use specification in the GTAP model," Conference papers 331748, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. K Hervé Dakpo & Philippe Jeanneaux & Laure Latruffe & Claire Mosnier & Patrick Veysset, 2018. "Three decades of productivity change in French beef production: a Färe‐Primont index decomposition," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 352-372, July.
    4. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    5. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    6. Ernest Reig‐Martínez & José A. Gómez‐Limón & Andrés J. Picazo‐Tadeo, 2011. "Ranking farms with a composite indicator of sustainability," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 561-575, September.
    7. Toloo, Mehdi & Ebrahimi, Bohlool & Amin, Gholam R., 2021. "New data envelopment analysis models for classifying flexible measures: The role of non-Archimedean epsilon," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1037-1050.
    8. Laura Di Giorgio & Abraham D Flaxman & Mark W Moses & Nancy Fullman & Michael Hanlon & Ruben O Conner & Alexandra Wollum & Christopher J L Murray, 2016. "Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble Model," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    9. Giannis Karagiannis & Panagiotis Ravanos, 2023. "On Value Efficiency Analysis and Cone-Ratio Data Envelopment Analysis models," Discussion Paper Series 2023_03, Department of Economics, University of Macedonia, revised Mar 2023.
    10. Kalinichenko, Olena & Amado, Carla A.F. & Santos, Sérgio P., 2022. "Exploring the potential of Data Envelopment Analysis for enhancing pay-for-performance programme design in primary health care," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1084-1100.
    11. Panagiotis Ravanos & Giannis Karagiannis, 2022. "On VEA, Production Trade-offs and Weight Restrictions," Discussion Paper Series 2022_04, Department of Economics, University of Macedonia, revised Jun 2022.
    12. Alejandro Nin‐Pratt & Bingxin Yu, 2010. "Getting implicit shadow prices right for the estimation of the Malmquist index: the case of agricultural total factor productivity in developing countries," Agricultural Economics, International Association of Agricultural Economists, vol. 41(3‐4), pages 349-360, May.
    13. Magdalena Cyrek & Barbara Fura, 2019. "Employment for Sustainable Development: Sectoral Efficiencies in EU Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 277-318, May.
    14. Temitayo A. Adeyemo & Victor O. Okoruwa, 2018. "Value Addition and Productivity Differentials in the Nigerian Cassava System," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    15. Ahn, Heinz & Neumann, Ludmila & Vazquez Novoa, Nadia, 2012. "Measuring the relative balance of DMUs," European Journal of Operational Research, Elsevier, vol. 221(2), pages 417-423.
    16. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    17. Glawischnig, Markus & Sommersguter-Reichmann, Margit, 2010. "Assessing the performance of alternative investments using non-parametric efficiency measurement approaches: Is it convincing?," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 295-303, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    2. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    3. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    4. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    5. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    6. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    7. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    8. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
    10. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    11. William W. Cooper & Kyung Sam Park & Gang Yu, 2001. "An Illustrative Application of Idea (Imprecise Data Envelopment Analysis) to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 49(6), pages 807-820, December.
    12. Gerami, Javad & Mozaffari, Mohammad Reza & Wanke, Peter F. & Correa, Henrique L., 2022. "Improving information reliability of non-radial value efficiency analysis: An additive slacks based measure approach," European Journal of Operational Research, Elsevier, vol. 298(3), pages 967-978.
    13. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    14. Cooper, William W. & Ruiz, Jose L. & Sirvent, Inmaculada, 2007. "Choosing weights from alternative optimal solutions of dual multiplier models in DEA," European Journal of Operational Research, Elsevier, vol. 180(1), pages 443-458, July.
    15. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    16. Halme, Merja & Korhonen, Pekka, 2000. "Restricting weights in value efficiency analysis," European Journal of Operational Research, Elsevier, vol. 126(1), pages 175-188, October.
    17. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    18. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    19. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    20. Krivonozhko, Vladimir E. & Førsund, Finn R. & Lychev, Andrey V., 2012. "Identifying Suspicious Efficient Units in DEA Models," Memorandum 30/2012, Oslo University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:145:y:2006:i:1:p:129-147:10.1007/s10479-006-0029-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.