IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v109y2025i2d10.1007_s10182-024-00518-x.html
   My bibliography  Save this article

Robust corrected empirical likelihood for partially linear measurement error models

Author

Listed:
  • Huihui Sun

    (Yancheng Teachers University
    Yancheng Teachers University)

  • Qiang Liu

    (Capital University of Economics and Business)

  • Yuying Jiang

    (Beijing Institute of Graphic Communication)

Abstract

This paper considers a partially linear model in which the covariates of parametric part are measured with normal distributed errors. A newly robust corrected empirical likelihood procedure based on the corrected score function is proposed to attenuate the effects of measurement errors as well as outliers. What’s more, profit from the QR decomposition technique, the parametric and nonparametric components of the models can be estimated separately. The asymptotic properties of the proposed robust corrected empirical likelihood approach are established under some regularity conditions. Simulation studies are demonstrated to show that our proposed method performs well in finite samples. Boston housing price data are applied to illustrate the proposed estimation procedure.

Suggested Citation

  • Huihui Sun & Qiang Liu & Yuying Jiang, 2025. "Robust corrected empirical likelihood for partially linear measurement error models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(2), pages 337-361, June.
  • Handle: RePEc:spr:alstar:v:109:y:2025:i:2:d:10.1007_s10182-024-00518-x
    DOI: 10.1007/s10182-024-00518-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00518-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00518-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    2. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    3. Weixin Yao & Bruce Lindsay & Runze Li, 2012. "Local modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 647-663.
    4. Xing-cai Zhou & Jin-Guan Lin, 2014. "Empirical likelihood for varying-coefficient semiparametric mixed-effects errors-in-variables models with longitudinal data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 51-69, March.
    5. Peixin Zhao & Xiaoshuang Zhou, 2018. "Robust empirical likelihood for partially linear models via weighted composite quantile regression," Computational Statistics, Springer, vol. 33(2), pages 659-674, June.
    6. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    7. Li Yan & Junwei He & Xia Chen, 2021. "Penalised empirical likelihood for semiparametric varying-coefficient partially linear errors-in-variables models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 33(1), pages 82-100, January.
    8. Xueqin Wang & Yunlu Jiang & Mian Huang & Heping Zhang, 2013. "Robust Variable Selection With Exponential Squared Loss," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 632-643, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    2. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    3. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    4. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    5. Hang Zou & Xiaowen Huang & Yunlu Jiang, 2025. "Robust variable selection for additive coefficient models," Computational Statistics, Springer, vol. 40(2), pages 977-997, February.
    6. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    7. Kangning Wang & Mengjie Hao & Xiaofei Sun, 2021. "Robust and efficient estimating equations for longitudinal data partial linear models and its applications," Statistical Papers, Springer, vol. 62(5), pages 2147-2168, October.
    8. Li, Shaomin & Wang, Kangning & Ren, Yanyan, 2018. "Robust estimation and empirical likelihood inference with exponential squared loss for panel data models," Economics Letters, Elsevier, vol. 164(C), pages 19-23.
    9. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    10. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    11. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    12. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Yue Chao & Lei Huang & Xuejun Ma & Jiajun Sun, 2024. "Optimal subsampling for modal regression in massive data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(4), pages 379-409, May.
    14. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Wu, Jinran & Wang, You-Gan & Tian, Yu-Chu & Burrage, Kevin & Cao, Taoyun, 2021. "Support vector regression with asymmetric loss for optimal electric load forecasting," Energy, Elsevier, vol. 223(C).
    16. Zhang, Yuexia & Qin, Guoyou & Zhu, Zhongyi & Zhang, Jiajia, 2018. "Robust estimation in linear regression models for longitudinal data with covariate measurement errors and outliers," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 261-275.
    17. Zheng, Shuzhuan & Liu, Rong & Yang, Lijian & Härdle, Wolfgang Karl, 2014. "Simultaneous confidence corridors and variable selection for generalized additive models," SFB 649 Discussion Papers 2014-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Wentao Wang & Jiaxuan Liang & Rong Liu & Yunquan Song & Min Zhang, 2022. "A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    19. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    20. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:109:y:2025:i:2:d:10.1007_s10182-024-00518-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.