IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v109y2025i1d10.1007_s10182-024-00500-7.html
   My bibliography  Save this article

Markov switching stereotype logit models for longitudinal ordinal data affected by unobserved heterogeneity in responding behavior

Author

Listed:
  • Roberto Colombi

    (University of Bergamo)

  • Sabrina Giordano

    (University of Calabria)

Abstract

When asked to assess their opinion about attitudes or perceptions on Likert-scale, respondents often endorse the midpoint or extremes of the scale and agree or disagree regardless of the content. These responding behaviors are known in the psychometric literature as middle, extremes, aquiescence and disacquiescence response styles that generally introduce bias in the results. One of the key motivations behind our approach is to account for these attitudes and how they evolve over time. The novelty of our proposal, in the context of longitudinal ordered categorical data, is in considering simultaneously the temporal dynamics of the responses (observable ordinal variables) and unobservable answering behaviors, possibly influenced by response styles, through a Markov switching logit model with two latent components. One component accommodates serial dependence and respondent’s unobserved heterogeneity, the other component determines the responding attitude (due to response styles or not). The dependence of the responses on covariates is modelled by a stereotype logit model with parameters varying according to the two latent components. The stereotype logit model is adopted because it is a flexible extension of the proportional odds logit model that retains the advantage of using a single parameter to describe a regressor effect. In the paper, a new interpretation of the parameters of the stereotype model is given by defining the allocation sets as intervals of values of the linear predictor that identify the most probable response. Unobserved heterogeneity, serial dependence and tendency to response style are modelled through our approach on longitudinal data, collected by the Bank of Italy.

Suggested Citation

  • Roberto Colombi & Sabrina Giordano, 2025. "Markov switching stereotype logit models for longitudinal ordinal data affected by unobserved heterogeneity in responding behavior," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 117-147, March.
  • Handle: RePEc:spr:alstar:v:109:y:2025:i:1:d:10.1007_s10182-024-00500-7
    DOI: 10.1007/s10182-024-00500-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00500-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00500-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colombi, R. & Giordano, S., 2012. "Graphical models for multivariate Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 90-103.
    2. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    3. Florens, J.-P. & Mouchart, M. & Rolin, J.-M., 1993. "Noncausality and marginalization of Markov processes," LIDAM Reprints CORE 1048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Florens, J.P. & Mouchart, M. & Rolin, J.M., 1993. "Noncausality and Marginalization of Markov Processes," Econometric Theory, Cambridge University Press, vol. 9(2), pages 241-262, April.
    5. Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.
    6. Roberto Colombi & Sabrina Giordano & Anna Gottard & Maria Iannario, 2019. "Hierarchical marginal models with latent uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 595-620, June.
    7. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Colombi & Sabrina Giordano & Maria Kateri, 2024. "Hidden Markov models for longitudinal rating data with dynamic response styles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(1), pages 1-36, March.
    2. Michel Mouchart & Renzo Orsi, 2016. "Building a Structural Model: Parameterization and Structurality," Econometrics, MDPI, vol. 4(2), pages 1-16, April.
    3. Colombi, R. & Giordano, S., 2015. "Multiple hidden Markov models for categorical time series," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 19-30.
    4. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    5. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    6. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    7. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    8. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    9. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    10. Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
    11. Renault, Eric & Triacca, Umberto, 2015. "Causality and separability," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 1-5.
    12. Eric Lucas dos Santos Cabral & Mario Orestes Aguirre Gonzalez & Priscila da Cunha Jacome Vidal & Joao Florencio da Costa Junior & Rafael Monteiro de Vasconcelos & David Cassimiro de Melo & Ruan Lucas , 2024. "Optimization Models for Operations and Maintenance of Offshore Wind Turbines Based on Artificial Intelligence and Operations Research: A Systematic Literature Review," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(3), pages 1-1, June.
    13. Jean-Pierre Florens & Denis Fougère & Thierry Kamionka & Michel Mouchart, 1994. "La modélisation économétrique des transitions individuelles sur le marché du travail," Économie et Prévision, Programme National Persée, vol. 116(5), pages 181-217.
    14. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "A copula-based model of speculative price dynamics in discrete time," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1047-1063, July.
    15. Victor Medina-Olivares & Raffaella Calabrese, 2023. "Detecting Consumers' Financial Vulnerability using Open Banking Data: Evidence from UK Payday Loans," Papers 2306.01749, arXiv.org.
    16. Furio Urso & Antonino Abbruzzo & Marcello Chiodi & Maria Francesca Cracolici, 2024. "Model selection for mixture hidden Markov models: an application to clickstream data," Statistical Papers, Springer, vol. 65(9), pages 5797-5834, December.
    17. Ruijin Lu & Tonja R. Nansel & Zhen Chen, 2023. "A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 288-308, April.
    18. Petrović, Ljiljana & Dimitrijević, Sladjana, 2012. "Causality with finite horizon of the past in continuous time," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1219-1223.
    19. Langrock, R. & Zucchini, W., 2011. "Hidden Markov models with arbitrary state dwell-time distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 715-724, January.
    20. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:109:y:2025:i:1:d:10.1007_s10182-024-00500-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.