IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v109y2025i1d10.1007_s10182-024-00500-7.html
   My bibliography  Save this article

Markov switching stereotype logit models for longitudinal ordinal data affected by unobserved heterogeneity in responding behavior

Author

Listed:
  • Roberto Colombi

    (University of Bergamo)

  • Sabrina Giordano

    (University of Calabria)

Abstract

When asked to assess their opinion about attitudes or perceptions on Likert-scale, respondents often endorse the midpoint or extremes of the scale and agree or disagree regardless of the content. These responding behaviors are known in the psychometric literature as middle, extremes, aquiescence and disacquiescence response styles that generally introduce bias in the results. One of the key motivations behind our approach is to account for these attitudes and how they evolve over time. The novelty of our proposal, in the context of longitudinal ordered categorical data, is in considering simultaneously the temporal dynamics of the responses (observable ordinal variables) and unobservable answering behaviors, possibly influenced by response styles, through a Markov switching logit model with two latent components. One component accommodates serial dependence and respondent’s unobserved heterogeneity, the other component determines the responding attitude (due to response styles or not). The dependence of the responses on covariates is modelled by a stereotype logit model with parameters varying according to the two latent components. The stereotype logit model is adopted because it is a flexible extension of the proportional odds logit model that retains the advantage of using a single parameter to describe a regressor effect. In the paper, a new interpretation of the parameters of the stereotype model is given by defining the allocation sets as intervals of values of the linear predictor that identify the most probable response. Unobserved heterogeneity, serial dependence and tendency to response style are modelled through our approach on longitudinal data, collected by the Bank of Italy.

Suggested Citation

  • Roberto Colombi & Sabrina Giordano, 2025. "Markov switching stereotype logit models for longitudinal ordinal data affected by unobserved heterogeneity in responding behavior," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 117-147, March.
  • Handle: RePEc:spr:alstar:v:109:y:2025:i:1:d:10.1007_s10182-024-00500-7
    DOI: 10.1007/s10182-024-00500-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00500-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00500-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florens, J.-P. & Mouchart, M. & Rolin, J.-M., 1993. "Noncausality and marginalization of Markov processes," LIDAM Reprints CORE 1048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Colombi, R. & Giordano, S., 2012. "Graphical models for multivariate Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 90-103.
    3. Florens, J.P. & Mouchart, M. & Rolin, J.M., 1993. "Noncausality and Marginalization of Markov Processes," Econometric Theory, Cambridge University Press, vol. 9(2), pages 241-262, April.
    4. Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.
    5. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    6. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
    7. Roberto Colombi & Sabrina Giordano & Anna Gottard & Maria Iannario, 2019. "Hierarchical marginal models with latent uncertainty," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 595-620, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Colombi & Sabrina Giordano & Maria Kateri, 2024. "Hidden Markov models for longitudinal rating data with dynamic response styles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(1), pages 1-36, March.
    2. Michel Mouchart & Renzo Orsi, 2016. "Building a Structural Model: Parameterization and Structurality," Econometrics, MDPI, vol. 4(2), pages 1-16, April.
    3. Colombi, R. & Giordano, S., 2015. "Multiple hidden Markov models for categorical time series," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 19-30.
    4. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    5. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    6. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    7. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    8. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    9. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    10. MOUCHART, Michel & SAN MARTIN , Ernesto, 1998. "Identification problems in a class of mixture models with an application to the LISREL model," LIDAM Discussion Papers CORE 1998025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    13. Lin, Yiqi & Song, Xinyuan, 2022. "Order selection for regression-based hidden Markov model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    14. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    15. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    16. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    17. Jesse D. Raffa & Joel A. Dubin, 2015. "Multivariate longitudinal data analysis with mixed effects hidden Markov models," Biometrics, The International Biometric Society, vol. 71(3), pages 821-831, September.
    18. Colombi, R. & Giordano, S., 2012. "Graphical models for multivariate Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 90-103.
    19. Ann E. McKellar & Roland Langrock & Jeffrey R. Walters & Dylan C. Kesler, 2015. "Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 148-157.
    20. Roberto Colombi & Sabrina Giordano, 2013. "Monotone dependence in graphical models for multivariate Markov chains," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 873-885, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:109:y:2025:i:1:d:10.1007_s10182-024-00500-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.