IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i3p484-486.html
   My bibliography  Save this article

Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates

Author

Listed:
  • F. Bartolucci

    ()

  • A. Farcomeni

    ()

  • F. Pennoni

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:3:p:484-486
    DOI: 10.1007/s11749-014-0393-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0393-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2011. "Assessment of School Performance Through a Multilevel Latent Markov Rasch Model," Journal of Educational and Behavioral Statistics, , vol. 36(4), pages 491-522, August.
    2. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    3. George Miller, 1952. "Finite markov processes in psychology," Psychometrika, Springer;The Psychometric Society, vol. 17(2), pages 149-167, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Dotto & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "A dynamic inhomogeneous latent state model for measuring material deprivation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 495-516, February.
    2. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016. "Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
    3. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    4. Lekkas, Peter & Paquet, Catherine & Howard, Natasha J. & Daniel, Mark, 2017. "Illuminating the lifecourse of place in the longitudinal study of neighbourhoods and health," Social Science & Medicine, Elsevier, vol. 177(C), pages 239-247.
    5. Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
    6. Amirali Kani & Wayne S. DeSarbo & Duncan K. H. Fong, 2018. "A Factorial Hidden Markov Model for the Analysis of Temporal Change in Choice Models," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(3), pages 162-177, December.
    7. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    8. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    9. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    10. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    11. Ingmar Visser & Maarten Speekenbrink, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 478-483, September.
    12. Ulf Böckenholt & Blakeley McShane, 2014. "Comments on: Latent Markov models: a review of the general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 469-472, September.
    13. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
    14. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    2. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    3. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    4. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
    5. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    6. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    7. Michela Gnaldi & Silvia Bacci & Francesco Bartolucci, 2016. "A multilevel finite mixture item response model to cluster examinees and schools," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(1), pages 53-70, March.
    8. Jesse D. Raffa & Joel A. Dubin, 2015. "Multivariate longitudinal data analysis with mixed effects hidden Markov models," Biometrics, The International Biometric Society, vol. 71(3), pages 821-831, September.
    9. Ann E. McKellar & Roland Langrock & Jeffrey R. Walters & Dylan C. Kesler, 2015. "Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 148-157.
    10. Yoonjung An & Mintak Han & Yongtae Park, 2017. "Identifying dynamic knowledge flow patterns of business method patents with a hidden Markov model," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 783-802, November.
    11. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    12. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    13. Leo Goodman, 1953. "A further note on “Finite Markov Processes in Psychology”," Psychometrika, Springer;The Psychometric Society, vol. 18(3), pages 245-248, September.
    14. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    15. Walter Zucchini & David Raubenheimer & Iain L. MacDonald, 2008. "Modeling Time Series of Animal Behavior by Means of a Latent-State Model with Feedback," Biometrics, The International Biometric Society, vol. 64(3), pages 807-815, September.
    16. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    17. Francesca Bassi & Bruno Scarpa, 2015. "Latent class modeling of markers of day-specific fertility," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 263-276, August.
    18. Sun-Joo Cho & Amanda P. Goodwin, 2017. "Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 846-870, September.
    19. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    20. Iain L. MacDonald, 2014. "Numerical Maximisation of Likelihood: A Neglected Alternative to EM?," International Statistical Review, International Statistical Institute, vol. 82(2), pages 296-308, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:3:p:484-486. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.