IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v23y2014i3p484-486.html
   My bibliography  Save this article

Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates

Author

Listed:
  • F. Bartolucci
  • A. Farcomeni
  • F. Pennoni

Abstract

No abstract is available for this item.

Suggested Citation

  • F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
  • Handle: RePEc:spr:testjl:v:23:y:2014:i:3:p:484-486
    DOI: 10.1007/s11749-014-0393-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-014-0393-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-014-0393-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2011. "Assessment of School Performance Through a Multilevel Latent Markov Rasch Model," Journal of Educational and Behavioral Statistics, , vol. 36(4), pages 491-522, August.
    2. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    3. George Miller, 1952. "Finite markov processes in psychology," Psychometrika, Springer;The Psychometric Society, vol. 17(2), pages 149-167, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Dotto & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "A dynamic inhomogeneous latent state model for measuring material deprivation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 495-516, February.
    2. Gordon Anderson, Alessio Farcomeni, Maria Grazia Pittau and Roberto Zelli, 2019. "Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development Since 1990," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(1), pages 1-22, March.
    3. Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
    4. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    5. Esther Acquah & Lorenzo Carbonari & Alessio Farcomeni & Giovanni Trovato, 2023. "Institutions and economic development: new measurements and evidence," Empirical Economics, Springer, vol. 65(4), pages 1693-1728, October.
    6. Fulvia Pennoni & Beata Bal-Domańska, 2022. "NEETs and Youth Unemployment: A Longitudinal Comparison Across European Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 739-761, July.
    7. Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
    8. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    9. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    10. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    11. Luca Brusa & Francesco Bartolucci & Fulvia Pennoni, 2023. "Tempered expectation-maximization algorithm for the estimation of discrete latent variable models," Computational Statistics, Springer, vol. 38(3), pages 1391-1424, September.
    12. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
    13. Amirali Kani & Wayne S. DeSarbo & Duncan K. H. Fong, 2018. "A Factorial Hidden Markov Model for the Analysis of Temporal Change in Choice Models," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(3), pages 162-177, December.
    14. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    15. Roberto Mari & Antonello Maruotti, 2022. "A two-step estimator for generalized linear models for longitudinal data with time-varying measurement error," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 273-300, June.
    16. Ulf Böckenholt & Blakeley McShane, 2014. "Comments on: Latent Markov models: a review of the general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 469-472, September.
    17. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
    18. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    19. Francesco Bartolucci & Alessio Farcomeni, 2022. "A hidden Markov space–time model for mapping the dynamics of global access to food," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 246-266, January.
    20. Ingmar Visser & Maarten Speekenbrink, 2014. "Comments on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 478-483, September.
    21. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016. "Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
    22. Prateek Bansal & Daniel Hörcher & Daniel J. Graham, 2022. "A dynamic choice model to estimate the user cost of crowding with large‐scale transit data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 615-639, April.
    23. Lekkas, Peter & Paquet, Catherine & Howard, Natasha J. & Daniel, Mark, 2017. "Illuminating the lifecourse of place in the longitudinal study of neighbourhoods and health," Social Science & Medicine, Elsevier, vol. 177(C), pages 239-247.
    24. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruijin Lu & Tonja R. Nansel & Zhen Chen, 2023. "A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 288-308, April.
    2. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    3. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    4. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    5. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    6. Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
    7. Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
    8. Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
    9. Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
    10. Eric Lucas dos Santos Cabral & Mario Orestes Aguirre Gonzalez & Priscila da Cunha Jacome Vidal & Joao Florencio da Costa Junior & Rafael Monteiro de Vasconcelos & David Cassimiro de Melo & Ruan Lucas , 2024. "Optimization Models for Operations and Maintenance of Offshore Wind Turbines Based on Artificial Intelligence and Operations Research: A Systematic Literature Review," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(3), pages 1-1, June.
    11. Leo Goodman, 1953. "A further note on “Finite Markov Processes in Psychology”," Psychometrika, Springer;The Psychometric Society, vol. 18(3), pages 245-248, September.
    12. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.
    13. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    14. Victor Medina-Olivares & Raffaella Calabrese, 2023. "Detecting Consumers' Financial Vulnerability using Open Banking Data: Evidence from UK Payday Loans," Papers 2306.01749, arXiv.org.
    15. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    16. Cees H. Elzinga & Adriaan W. Hoogendoorn & Wil Dijkstra, 2007. "Linked Markov Sources," Sociological Methods & Research, , vol. 36(1), pages 26-47, August.
    17. Langrock, R. & Zucchini, W., 2011. "Hidden Markov models with arbitrary state dwell-time distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 715-724, January.
    18. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    19. Luca Merlo & Lea Petrella & Nikos Tzavidis, 2022. "Quantile mixed hidden Markov models for multivariate longitudinal data: An application to children's Strengths and Difficulties Questionnaire scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 417-448, March.
    20. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:23:y:2014:i:3:p:484-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.