Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Shirley Pledger & Carl Schwarz, 2002. "Modelling heterogeneity of survival in band-recovery data using mixtures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 315-327.
- Joanna M. Bagniewska & Tom Hart & Lauren A. Harrington & David W. Macdonald, 2013. "Hidden Markov analysis describes dive patterns in semiaquatic animals," Behavioral Ecology, International Society for Behavioral Ecology, vol. 24(3), pages 659-667.
- Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
- Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2003. "Open Capture-Recapture Models with Heterogeneity: I. Cormack-Jolly-Seber Model," Biometrics, The International Biometric Society, vol. 59(4), pages 786-794, December.
- Dylan C. Kesler & Jeffrey R. Walters & John J. Kappes, 2010. "Social influences on dispersal and the fat-tailed dispersal distribution in red-cockaded woodpeckers," Behavioral Ecology, International Society for Behavioral Ecology, vol. 21(6), pages 1337-1343.
- P. G. Blackwell, 2003. "Bayesian inference for Markov processes with diffusion and discrete components," Biometrika, Biometrika Trust, vol. 90(3), pages 613-627, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kehui Yao & Ian P. McGahan & Jun Zhu & Daniel J. Storm & Daniel P. Walsh, 2025. "Animal Trajectory Imputation and Uncertainty Quantification via Deep Learning," Environmetrics, John Wiley & Sons, Ltd., vol. 36(6), September.
- Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
- A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
- Michael A. Spence & Evalyne W. Muiruri & David L. Maxwell & Scott Davis & Dave Sheahan, 2021. "The application of continuous‐time Markov chain models in the analysis of choice flume experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1103-1123, August.
- Vianey Leos-Barajas & Eric J. Gangloff & Timo Adam & Roland Langrock & Floris M. Beest & Jacob Nabe-Nielsen & Juan M. Morales, 2017. "Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 232-248, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
- Spezia, L. & Cooksley, S.L. & Brewer, M.J. & Donnelly, D. & Tree, A., 2014. "Modelling species abundance in a river by Negative Binomial hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 599-614.
- Roberto Colombi & Sabrina Giordano & Maria Kateri, 2024. "Hidden Markov models for longitudinal rating data with dynamic response styles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(1), pages 1-36, March.
- Marino, Maria Francesca & Alfó, Marco, 2016. "Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 193-209.
- Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
- Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015.
"Multilevel multivariate modelling of legislative count data, with a hidden Markov chain,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 705-723, June.
- Francesco Lagona & Antonello Maruotti & Fabio Padovano, 2015. "Multilevel multivariate modelling of legislative count data, with a hidden Markov chain," Post-Print halshs-01246575, HAL.
- Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
- R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
- Devin S. Johnson & Dana L. Thomas & Jay M. Ver Hoef & Aaron Christ, 2008. "A General Framework for the Analysis of Animal Resource Selection from Telemetry Data," Biometrics, The International Biometric Society, vol. 64(3), pages 968-976, September.
- Théo Michelot & Paul G. Blackwell & Simon Chamaillé‐Jammes & Jason Matthiopoulos, 2020. "Inference in MCMC step selection models," Biometrics, The International Biometric Society, vol. 76(2), pages 438-447, June.
- Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
- Mu Niu & Fay Frost & Jordan E. Milner & Anna Skarin & Paul G. Blackwell, 2022. "Modelling group movement with behaviour switching in continuous time," Biometrics, The International Biometric Society, vol. 78(1), pages 286-299, March.
- Lin, Yiqi & Song, Xinyuan, 2022. "Order selection for regression-based hidden Markov model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
- Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
- Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
- Giorgio E. Montanari & Marco Doretti, 2019. "Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 307-326, November.
- Byeongheon Lee & Joowon Park & Yongku Kim, 2023. "Hidden Markov Model Based on Logistic Regression," Mathematics, MDPI, vol. 11(20), pages 1-12, October.
- Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
- Florence Chaubert-Pereira & Yann Guédon & Christian Lavergne & Catherine Trottier, 2010. "Markov and Semi-Markov Switching Linear Mixed Models Used to Identify Forest Tree Growth Components," Biometrics, The International Biometric Society, vol. 66(3), pages 753-762, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:beheco:v:26:y:2015:i:1:p:148-157.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/beheco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/oup/beheco/v26y2015i1p148-157..html