IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i8p2562-2573.html
   My bibliography  Save this article

Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity

Author

Listed:
  • Zhang, Hongmei
  • Ghosh, Kaushik
  • Ghosh, Pulak

Abstract

In a sample of mRNA species counts, sequences without duplicates or with small numbers of copies are likely to carry information related to mutations or diseases and can be of great interest. However, in some situations, sequence abundance is unknown and sequencing the whole sample to find the rare sequences is not practically possible. To collect mRNA sequences of interest, or more generally, species of interest, we propose a two-phase Bayesian sampling method that addresses these concerns. The first phase of the design is used to infer sequence (species) abundance levels through a cluster analysis applied to a pilot data set. The clustering method is built upon a multivariate hypergeometric model with a Dirichlet process prior for species relative frequencies. The second phase, through Monte Carlo simulations, infers the sample size necessary to collect a certain number of species of particular interest. Efficient posterior computing schemes are proposed. The developed approach is demonstrated and evaluated via simulations. An mRNA segment data set is used to illustrate and motivate the proposed sampling method.

Suggested Citation

  • Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2562-2573
    DOI: 10.1016/j.csda.2012.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000953
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji-Ping Wang, 2010. "Estimating species richness by a Poisson-compound gamma model," Biometrika, Biometrika Trust, vol. 97(3), pages 727-740.
    2. Anne Chao & John Bunge, 2002. "Estimating the Number of Species in a Stochastic Abundance Model," Biometrics, The International Biometric Society, vol. 58(3), pages 531-539, September.
    3. Mao, Chang Xuan, 2006. "Inference on the Number of Species Through Geometric Lower Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1663-1670, December.
    4. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2010. "Open Capture–Recapture Models with Heterogeneity: II. Jolly–Seber Model," Biometrics, The International Biometric Society, vol. 66(3), pages 883-890, September.
    5. Mary C. Christman & Feng Lan, 2001. "Inverse Adaptive Cluster Sampling," Biometrics, The International Biometric Society, vol. 57(4), pages 1096-1105, December.
    6. Hongmei Zhang, 2007. "Inferences on the Number of Unseen Species and the Number of Abundant/Rare Species," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(6), pages 725-740.
    7. Shirley Pledger & Kenneth H. Pollock & James L. Norris, 2003. "Open Capture-Recapture Models with Heterogeneity: I. Cormack-Jolly-Seber Model," Biometrics, The International Biometric Society, vol. 59(4), pages 786-794, December.
    8. Jeffrey S. Morris & Keith A. Baggerly & Kevin R. Coombes, 2003. "Bayesian Shrinkage Estimation of the Relative Abundance of mRNA Transcripts Using SAGE," Biometrics, The International Biometric Society, vol. 59(3), pages 476-486, September.
    9. Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
    10. Xuan Mao, Chang, 2007. "Estimating population sizes for capture-recapture sampling with binomial mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5211-5219, July.
    11. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    12. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "A Bayesian Nonparametric Method for Prediction in EST Analysis," ICER Working Papers - Applied Mathematics Series 16-2007, ICER - International Centre for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Shengtong & Zhang, Hongmei & Karmaus, Wilfried & Roberts, Graham & Arshad, Hasan, 2017. "Adjusting background noise in cluster analyses of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 93-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:8:p:2562-2573. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.