IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i1d10.1007_s10463-023-00876-4.html
   My bibliography  Save this article

Model averaging for estimating treatment effects

Author

Listed:
  • Zhihao Zhao

    (Capital University of Economics and Business)

  • Xinyu Zhang

    (Chinese Academy of Sciences)

  • Guohua Zou

    (Capital Normal University)

  • Alan T. K. Wan

    (City University of Hong Kong)

  • Geoffrey K. F. Tso

    (City University of Hong Kong)

Abstract

The estimation of treatment effects on the response variable is often a primary goal in empirical investigations in disciplines such as medicine, economics and marketing. Typically, the investigator would select one model from a multitude of models and estimate the treatment effects based on this single winning model. In this paper, we consider an alternative model averaging approach, where estimates of treatment effects are obtained from not one single model but a weighted ensemble of models. We develop a weight choice method based on a minimisation of the approximate risk under squared error loss of the model average estimator of the conditional treatment effects. We prove that the model average estimator resulting from this criterion has an optimal asymptotic property. The results of a simulation study show that the proposed approach is superior to various existing model selection and averaging methods in a large region of the parameter space in finite samples. The proposed method is applied to a data set on HIV treatment.

Suggested Citation

  • Zhihao Zhao & Xinyu Zhang & Guohua Zou & Alan T. K. Wan & Geoffrey K. F. Tso, 2024. "Model averaging for estimating treatment effects," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(1), pages 73-92, February.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:1:d:10.1007_s10463-023-00876-4
    DOI: 10.1007/s10463-023-00876-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00876-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00876-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loraine Seng & Jialiang Li, 2022. "Structural Equation Model Averaging: Methodology and Application," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 815-828, April.
    2. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
    3. Jinchi Lv & Jun S. Liu, 2014. "Model selection principles in misspecified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 141-167, January.
    4. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    5. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    6. Yuan, Zheng & Yang, Yuhong, 2005. "Combining Linear Regression Models: When and How?," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1202-1214, December.
    7. Rolling, Craig A. & Yang, Yuhong & Velez, Dagmar, 2019. "Combining Estimates Of Conditional Treatment Effects," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1089-1110, December.
    8. Zhang, Xinyu & Liu, Chu-An, 2019. "Inference After Model Averaging In Linear Regression Models," Econometric Theory, Cambridge University Press, vol. 35(4), pages 816-841, August.
    9. Zhang, Xinyu, 2021. "A New Study On Asymptotic Optimality Of Least Squares Model Averaging," Econometric Theory, Cambridge University Press, vol. 37(2), pages 388-407, April.
    10. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    11. Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
    12. Craig A. Rolling & Yuhong Yang, 2014. "Model selection for estimating treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 749-769, September.
    13. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    14. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    15. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    16. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    17. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    18. Rong Zhu & Alan T. K. Wan & Xinyu Zhang & Guohua Zou, 2019. "A Mallows-Type Model Averaging Estimator for the Varying-Coefficient Partially Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 882-892, April.
    19. Guido Kuersteiner & Ryo Okui, 2010. "Constructing Optimal Instruments by First-Stage Prediction Averaging," Econometrica, Econometric Society, vol. 78(2), pages 697-718, March.
    20. Orley Ashenfelter & David Card, 1984. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," Working Papers 554, Princeton University, Department of Economics, Industrial Relations Section..
    21. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    22. Seojeong Lee & Youngki Shin, 2021. "Complete subset averaging with many instruments," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 290-314.
    23. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    24. Xinyu Zhang & Guohua Zou & Hua Liang & Raymond J. Carroll, 2020. "Parsimonious Model Averaging With a Diverging Number of Parameters," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 972-984, April.
    25. Yang Y., 2001. "Adaptive Regression by Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 574-588, June.
    26. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    27. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    28. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    29. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    30. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.
    2. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    3. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    5. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).
    6. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    7. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    8. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    9. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    10. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    11. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    12. Fang, Fang & Liu, Minhan, 2020. "Limit of the optimal weight in least squares model averaging with non-nested models," Economics Letters, Elsevier, vol. 196(C).
    13. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    14. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    15. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    16. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    17. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    18. Chu-An Liu & Biing-Shen Kuo & Wen-Jen Tsay, 2017. "Autoregressive Spectral Averaging Estimator," IEAS Working Paper : academic research 17-A013, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    19. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    20. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:1:d:10.1007_s10463-023-00876-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.