IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v64y2012i3p657-676.html
   My bibliography  Save this article

On robust classification using projection depth

Author

Listed:
  • Subhajit Dutta
  • Anil Ghosh

Abstract

No abstract is available for this item.

Suggested Citation

  • Subhajit Dutta & Anil Ghosh, 2012. "On robust classification using projection depth," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 657-676, June.
  • Handle: RePEc:spr:aistmt:v:64:y:2012:i:3:p:657-676
    DOI: 10.1007/s10463-011-0324-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-011-0324-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-011-0324-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jörnsten, Rebecka, 2004. "Clustering and classification based on the L1 data depth," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 67-89, July.
    2. Hubert, Mia & Van Driessen, Katrien, 2004. "Fast and robust discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 301-320, March.
    3. Anil K. Ghosh & Probal Chaudhuri, 2005. "On Maximum Depth and Related Classifiers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 327-350, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    2. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    3. Shao, Wei & Zuo, Yijun, 2012. "Simulated annealing for higher dimensional projection depth," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4026-4036.
    4. Francesca Fortunato & Laura Anderlucci & Angela Montanari, 2020. "One‐class classification with application to forensic analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1227-1249, November.
    5. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    6. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    7. Yunlu Jiang & Canhong Wen & Xueqin Wang, 2018. "Adaptive Exponential Power Depth with Application to Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 466-480, October.
    8. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Ondrej Vencalek & Olusola Samuel Makinde, 2021. "RR-classifier: a nonparametric classification procedure in multidimensional space based on relative ranks," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 675-693, December.
    10. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    2. Nedret Billor & Asheber Abebe & Asuman Turkmen & Sai Nudurupati, 2008. "Classification Based on Depth Transvariations," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 249-260, November.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    4. Mia Hubert & Stephan Van der Veeken, 2010. "Robust classification for skewed data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 239-254, December.
    5. López Pintado, Sara, 2005. "Depth-based classification for functional data," DES - Working Papers. Statistics and Econometrics. WS ws055611, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Yonggang Hu & Yong Wang & Yi Wu & Qiang Li & Chenping Hou, 2011. "Generalized Mahalanobis depth in the reproducing kernel Hilbert space," Statistical Papers, Springer, vol. 52(3), pages 511-522, August.
    7. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    8. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    9. Daouia, Abdelaati & Paindaveine, Davy, 2019. "Multivariate Expectiles, Expectile Depth and Multiple-Output Expectile Regression," TSE Working Papers 19-1022, Toulouse School of Economics (TSE), revised Feb 2023.
    10. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    11. Alper Sinan & B. Barıs Alkan, 2015. "A useful approach to identify the multicollinearity in the presence of outliers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 986-993, May.
    12. Hennig, Christian, 2008. "Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1154-1176, July.
    13. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    14. Todorov, Valentin & Filzmoser, Peter, 2010. "Robust statistic for the one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 37-48, January.
    15. Olusola Samuel Makinde, 2019. "Classification rules based on distribution functions of functional depth," Statistical Papers, Springer, vol. 60(3), pages 629-640, June.
    16. Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
    17. Matías Salibián-Barrera & Stefan Aelst & Gert Willems, 2008. "Fast and robust bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(1), pages 41-71, February.
    18. Valentin Todorov, 2007. "Robust selection of variables in linear discriminant analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 395-407, February.
    19. Vincenzo Verardi & Catherine Dehon, 2010. "Multivariate outlier detection in Stata," Stata Journal, StataCorp LP, vol. 10(2), pages 259-266, June.
    20. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    21. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:64:y:2012:i:3:p:657-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.