IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v88y2025i3d10.1007_s00184-024-00958-0.html
   My bibliography  Save this article

Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean

Author

Listed:
  • Qing Liu

    (Jiangxi University of Finance and Economics
    Jiangxi University of Finance and Economics)

  • Xiaohui Liu

    (Jiangxi University of Finance and Economics
    Jiangxi University of Finance and Economics)

  • Zihao Hu

    (Jiangxi University of Finance and Economics
    Jiangxi University of Finance and Economics)

Abstract

Median absolute deviation (hereafter MAD) is known as a robust alternative to the ordinary variance. It has been widely utilized to induce robust statistical inferential procedures. In this paper, we investigate the strong and weak Bahadur representations of its bootstrap counterpart. As a useful application, we utilize the results to derive the weak Bahadur representation of the bootstrap sample projection depth weighted mean—a quite important location estimator depending on MAD.

Suggested Citation

  • Qing Liu & Xiaohui Liu & Zihao Hu, 2025. "Bahadur representations for the bootstrap median absolute deviation and the application to projection depth weighted mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(3), pages 341-364, April.
  • Handle: RePEc:spr:metrik:v:88:y:2025:i:3:d:10.1007_s00184-024-00958-0
    DOI: 10.1007/s00184-024-00958-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-024-00958-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-024-00958-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serfling, Robert & Mazumder, Satyaki, 2009. "Exponential probability inequality and convergence results for the median absolute deviation and its modifications," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1767-1773, August.
    2. Michael Falk, 1997. "On Mad and Comedians," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 615-644, December.
    3. Mazumder, Satyaki & Serfling, Robert, 2009. "Bahadur representations for the median absolute deviation and its modifications," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1774-1783, August.
    4. Yijun Zuo, 2015. "Bahadur representations for bootstrap quantiles," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 597-610, July.
    5. Subhajit Dutta & Anil Ghosh, 2012. "On robust classification using projection depth," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 657-676, June.
    6. Wendler, Martin, 2011. "Bahadur representation for U-quantiles of dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1064-1079, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel, Bräutigam & Marie, Kratz, 2018. "On the Dependence between Quantiles and Dispersion Estimators," ESSEC Working Papers WP1807, ESSEC Research Center, ESSEC Business School.
    2. Nagatsuka, Hideki & Kawakami, Hiroshi & Kamakura, Toshinari & Yamamoto, Hisashi, 2013. "The exact finite-sample distribution of the median absolute deviation about the median of continuous random variables," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 999-1005.
    3. Marcel Bräutigam & Marie Kratz, 2018. "On the Dependence between Quantiles and Dispersion Estimators," Working Papers hal-02296832, HAL.
    4. Cabana Garceran del Vall, Elisa & Laniado Rodas, Henry & Lillo Rodríguez, Rosa Elvira, 2017. "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators," DES - Working Papers. Statistics and Econometrics. WS 24613, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    6. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    7. Zacharias Psaradakis & Marián Vávra, 2022. "Using Triples to Assess Symmetry Under Weak Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1538-1551, October.
    8. Yunlu Jiang & Canhong Wen & Xueqin Wang, 2018. "Adaptive Exponential Power Depth with Application to Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 466-480, October.
    9. Wang, Shanshan & Serfling, Robert, 2018. "On masking and swamping robustness of leading nonparametric outlier identifiers for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 32-49.
    10. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    11. Serfling, Robert & Mazumder, Satyaki, 2009. "Exponential probability inequality and convergence results for the median absolute deviation and its modifications," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1767-1773, August.
    12. Wang, Jin, 2019. "Asymptotics of generalized depth-based spread processes and applications," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 363-380.
    13. Lin Fan & Peter W. Glynn & Markus Pelger, 2018. "Change-Point Testing for Risk Measures in Time Series," Papers 1809.02303, arXiv.org, revised Jul 2023.
    14. Francesca Fortunato & Laura Anderlucci & Angela Montanari, 2020. "One‐class classification with application to forensic analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1227-1249, November.
    15. Sharipov, Olimjon Sh. & Wendler, Martin, 2013. "Normal limits, nonnormal limits, and the bootstrap for quantiles of dependent data," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1028-1035.
    16. Marcel Bräutigam & Marie Kratz, 2019. "Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes," Working Papers hal-02176276, HAL.
    17. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    18. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    19. Laíla Luana Campos & Daniel Furtado Ferreira, 2022. "Robust modified classical spherical tests in the presence of outliers," Statistical Papers, Springer, vol. 63(5), pages 1561-1576, October.
    20. Dehling, Herold & Fried, Roland, 2012. "Asymptotic distribution of two-sample empirical U-quantiles with applications to robust tests for shifts in location," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 124-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:3:d:10.1007_s00184-024-00958-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.