IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v64y2012i2p255-273.html
   My bibliography  Save this article

Asymptotic normality of Powell’s kernel estimator

Author

Listed:
  • Kengo Kato

    ()

Abstract

No abstract is available for this item.

Suggested Citation

  • Kengo Kato, 2012. "Asymptotic normality of Powell’s kernel estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 255-273, April.
  • Handle: RePEc:spr:aistmt:v:64:y:2012:i:2:p:255-273
    DOI: 10.1007/s10463-010-0310-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-010-0310-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sam Efromovich, 2007. "Optimal nonparametric estimation of the density of regression errors with finite support," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 617-654, December.
    2. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, December.
    4. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    5. Ahmad, Ibrahim A., 1992. "Residuals density estimation in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 133-139, May.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Cheng, Fuxia, 2002. "Consistency of error density and distribution function estimators in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 59(3), pages 257-270, October.
    8. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    9. Hall, Peter & Horowitz, Joel L., 1990. "Bandwidth Selection in Semiparametric Estimation of Censored Linear Regression Models," Econometric Theory, Cambridge University Press, vol. 6(02), pages 123-150, June.
    10. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    11. Phillips, P.C.B., 1991. "A Shortcut to LAD Estimator Asymptotics," Econometric Theory, Cambridge University Press, vol. 7(04), pages 450-463, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri, revised 28 Feb 2018.
    2. Hong, Han & Mahajan, Aprajit & Nekipelov, Denis, 2015. "Extremum estimation and numerical derivatives," Journal of Econometrics, Elsevier, vol. 188(1), pages 250-263.
    3. Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri, revised 28 Feb 2018.
    4. Galvao, Antonio F. & Wang, Liang, 2015. "Efficient minimum distance estimator for quantile regression fixed effects panel data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:64:y:2012:i:2:p:255-273. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.