IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v15y2021i3d10.1007_s11634-020-00430-7.html
   My bibliography  Save this article

Robust semiparametric inference for polytomous logistic regression with complex survey design

Author

Listed:
  • Elena Castilla

    (Complutense University of Madrid)

  • Abhik Ghosh

    (Indian Statistical Institute)

  • Nirian Martin

    (Actuarial Economics and Statistics, Complutense University of Madrid)

  • Leandro Pardo

    (Complutense University of Madrid)

Abstract

Analyzing polytomous response from a complex survey scheme, like stratified or cluster sampling is very crucial in several socio-economics applications. We present a class of minimum quasi weighted density power divergence estimators for the polytomous logistic regression model with such a complex survey. This family of semiparametric estimators is a robust generalization of the maximum quasi weighted likelihood estimator exploiting the advantages of the popular density power divergence measure. Accordingly robust estimators for the design effects are also derived. Using the new estimators, robust testing of general linear hypotheses on the regression coefficients are proposed. Their asymptotic distributions and robustness properties are theoretically studied and also empirically validated through a numerical example and an extensive Monte Carlo study.

Suggested Citation

  • Elena Castilla & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2021. "Robust semiparametric inference for polytomous logistic regression with complex survey design," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 701-734, September.
  • Handle: RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00430-7
    DOI: 10.1007/s11634-020-00430-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-020-00430-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-020-00430-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.-F. Beaumont & D. Haziza & A. Ruiz-Gazen, 2013. "A unified approach to robust estimation in finite population sampling," Biometrika, Biometrika Trust, vol. 100(3), pages 555-569.
    2. Jorge G. Morel & Kenneth J. Koehler, 1995. "Corrigendum: A One‐Step Gauss‐Newton Estimator for Modelling Categorical Data with Extraneous Variation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(3), pages 410-410, September.
    3. A. Gupta & D. Kasturiratna & T. Nguyen & L. Pardo, 2006. "A New Family of BAN Estimators for Polytomous Logistic Regression Models based on ϕ- Divergence Measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 159-176, August.
    4. Elena Castilla & Nirian Martín & Leandro Pardo, 2018. "Minimum phi-divergence estimators for multinomial logistic regression with complex sample design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 381-411, July.
    5. Abhik Ghosh & Ayanendranath Basu, 2015. "Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2056-2072, September.
    6. Jorge G. Morel & Kenneth J. Koehler, 1995. "A One‐Step Gauss‐Newton Estimator for Modelling Categorical Data with Extraneous Variation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(2), pages 187-200, June.
    7. Rousseeuw, Peter J. & Christmann, Andreas, 2003. "Robustness against separation and outliers in logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 315-332, July.
    8. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    9. A. K. Gupta & D. Kasturiratna & T. Nguyen & L. Pardo, 2006. "A New Family of BAN Estimators for Polytomous Logistic Regression Models based on ϕ- Divergence Measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(2), pages 159-176, August.
    10. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    11. Raúl Jiménz & Yongzhao Shao, 2001. "On robustness and efficiency of minimum divergence estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 241-248, December.
    12. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
    2. Bianco, Ana M. & Boente, Graciela & Rodrigues, Isabel M., 2013. "Robust tests in generalized linear models with missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 80-97.
    3. Pardo, L. & Pardo, M.C., 2008. "An extension of likelihood-ratio-test for testing linear hypotheses in the baseline-category logit model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1477-1489, January.
    4. Elena Castilla & Nirian Martín & Leandro Pardo, 2018. "Minimum phi-divergence estimators for multinomial logistic regression with complex sample design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 381-411, July.
    5. Ana Bianco & Graciela Boente & Wenceslao González-Manteiga & Ana Pérez-González, 2011. "Asymptotic behavior of robust estimators in partially linear models with missing responses: the effect of estimating the missing probability on the simplified marginal estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 524-548, November.
    6. Ana M. Bianco & Graciela Boente & Gonzalo Chebi, 2022. "Penalized robust estimators in sparse logistic regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 563-594, September.
    7. D.M. Sakate & D.N. Kashid, 2014. "Variable selection via penalized minimum φ-divergence estimation in logistic regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1233-1246, June.
    8. Mulry Mary H. & Kaputa Stephen & Thompson Katherine J., 2018. "Setting M-Estimation Parameters for Detection and Treatment of Influential Values," Journal of Official Statistics, Sciendo, vol. 34(2), pages 483-501, June.
    9. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    10. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    11. Cizek, Pavel, 2008. "Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 687-696, June.
    12. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    13. Kweh, Qian Long & Tebourbi, Imen & Lo, Huai-Chun & Huang, Cheng-Tsu, 2022. "CEO compensation and firm performance: Evidence from financially constrained firms," Research in International Business and Finance, Elsevier, vol. 61(C).
    14. Valéry Dongmo Jiongo, 2017. "The Bank of Canada 2015 Retailer Survey on the Cost of Payment Methods: Estimation of the Total Private Cost for Large Businesses," Technical Reports 110, Bank of Canada.
    15. Ayman Hijazy & András Zempléni, 2021. "Gamma Process-Based Models for Disease Progression," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 241-255, March.
    16. E. Castilla & N. Martín & L. Pardo & K. Zografos, 2021. "Composite likelihood methods: Rao-type tests based on composite minimum density power divergence estimator," Statistical Papers, Springer, vol. 62(2), pages 1003-1041, April.
    17. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    18. Jaros³aw Kaczmarek, 2012. "Construction Elements Of Bankruptcy Prediction Models In Multi–Dimensional Early Warning Systems," Polish Journal of Management Studies, Czestochowa Technical University, Department of Management, vol. 5(1), pages 136-149, June.
    19. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    20. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00430-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.