IDEAS home Printed from https://ideas.repec.org/a/sot/journl/y2013i53p5.html
   My bibliography  Save this article

Pedestrian flow characteristics for different pedestrian facilities and situations

Author

Listed:
  • Rastogi, R.
  • Ilango, T.
  • Chandra, S.

Abstract

The pedestrian walking data collected at nineteen locations in five cities of India are analyzed in this paper. Pedestrian facilities are classified based on their width as sidewalk, wide-sidewalk and precincts. The analysis indicates that the pedestrian free flow speed is high on sidewalks (1.576 m/s) and low on precincts (1.340 m/s). The increase in width of the facility resulted in increased space available to a pedestrian, but reduced maximum flow rate and optimum density. It is found that the relationship between speed and density follows Underwood (exponential) model on sidewalk of varying widths and Greenshield’s (linear) model on a non-exclusive facility. Bi-directional flow on a facility affects the free flow speed and space available to the pedestrian adversely at high density. Squeezing effect at the centre and follow the predecessor near sides is observed under heavy bidirectional flow. The presence of a bottleneck reduces the free flow speed and maximum flow substantially. Pedestrians moved in layers at high density. Maximum flow rate is observed to be higher on the carriageway (2.067 ped/s) as compared to an exclusive pedestrian facility (1.493 ped/s).

Suggested Citation

  • Rastogi, R. & Ilango, T. & Chandra, S., 2013. "Pedestrian flow characteristics for different pedestrian facilities and situations," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-5.
  • Handle: RePEc:sot:journl:y:2013:i:53:p:5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10077/8692
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    2. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    3. Hughes, Roger L., 2002. "A continuum theory for the flow of pedestrians," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 507-535, July.
    4. Tajima, Yusuke & Takimoto, Kouhei & Nagatani, Takashi, 2001. "Scaling of pedestrian channel flow with a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(1), pages 257-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yuxing & Zhuang, Yifan & Dong, Fangshu & Peng, Fei & Zhang, Ping & Yang, Lizhong & Ni, Yong, 2020. "Experimental study on the effect of trolley case on unidirectional pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    2. Francesco Pinna & Roberto Murrau, 2018. "Age Factor and Pedestrian Speed on Sidewalks," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    3. Marija Nikolić & Michel Bierlaire & Matthieu de Lapparent & Riccardo Scarinci, 2019. "Multiclass Speed-Density Relationship for Pedestrian Traffic," Transportation Science, INFORMS, vol. 53(3), pages 642-664, May.
    4. Nikolić, Marija & Bierlaire, Michel & Farooq, Bilal & de Lapparent, Matthieu, 2016. "Probabilistic speed–density relationship for pedestrian traffic," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 58-81.
    5. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    2. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    3. He, Mengchen & Wang, Qiao & Chen, Juan & Xu, Shiwei & Ma, Jian, 2023. "Modeling pedestrian walking behavior in the flow field with moving walkways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    4. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    5. Jiang, Yan-Qun & Hu, Ying-Gang & Huang, Xiaoqian, 2022. "Modeling pedestrian flow through a bottleneck based on a second-order continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    7. Hu, Xiangmin & Chen, Tao & Deng, Kaifeng & Wang, Guanning, 2023. "Effects of aggressiveness on pedestrian room evacuation using extended cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    8. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    9. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    10. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    11. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    12. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    13. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    14. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    16. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    17. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    18. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    19. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    20. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sot:journl:y:2013:i:53:p:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Romeo Danielis (email available below). General contact details of provider: https://edirc.repec.org/data/xxxxxxx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.