IDEAS home Printed from https://ideas.repec.org/a/sbe/breart/v24y2004i2a2712.html
   My bibliography  Save this article

Generalized Hyperbolic Distributions and Brazilian Data

Author

Listed:
  • Fajardo, José
  • Farias, Aquiles

Abstract

The aim of this paper is to discuss the use of the Generalized Hyperbolic Distributions to fit Brazilian assets returns. Selected subclasses are compared regarding goodness of fit statistics and distances. Empirical results show that these distributions fit data well. Then we show how to use these distributions in value at risk estimation and derivative price computation.

Suggested Citation

  • Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
  • Handle: RePEc:sbe:breart:v:24:y:2004:i:2:a:2712
    as

    Download full text from publisher

    File URL: https://periodicos.fgv.br/bre/article/view/2712
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pedro L. Valls Pereira & Hotta, L.K. & Souza, L.A.R., 1999. "Alternative Models to extract asset volatility: a comparative study," Finance Lab Working Papers flwp_14, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    2. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    3. Issler, João Victor, 1999. "Estimating and Forecasting the Volatility of Brazilian Finance Series Using ARCH Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    4. Mendes, Beatriz Vaz de Melo & Júnior, Antonio Marcos Duarte, 1999. "Robust Estimation for ARCH Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    5. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    6. Pereira, Pedro L. Valls & Hotta, Luiz K. & Souza, Luiz Alvares R. de & Almeida, Nuno Miguel C. G. de, 1999. "Alternative Models To Extract Asset Volatility: A Comparative Study," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    7. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    9. Barbachan, José Fajardo & Schuschny, Andrés Ricardo & Silva, André de Castro, 2001. "Lévy processes and the Brazilian market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(2), November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbachan, José Fajardo & Schuschny, Andrés Ricardo & Silva, André de Castro, 2001. "Lévy processes and the Brazilian market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(2), November.
    2. Fajardo, J. & Farias, A., 2003. "Generalized Hyperbolic Distributions and Brazilian Data," Finance Lab Working Papers flwp_57, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    3. Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    4. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    5. Marçal, Emerson F. & Valls Pereira, Pedro L., 2008. "Testando A Hipótese De Contágio A Partir De Modelos Multivariados De Volatilidade [Testing the contagion hypotheses using multivariate volatility models]," MPRA Paper 10356, University Library of Munich, Germany.
    6. Tao Li & Anthony F. Desmond & Thanasis Stengos, 2021. "Dimension Reduction via Penalized GLMs for Non-Gaussian Response: Application to Stock Market Volatility," JRFM, MDPI, vol. 14(12), pages 1-26, December.
    7. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    8. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    9. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
    10. Malik, Ali Khalil, 2005. "European exchange rate volatility dynamics: an empirical investigation," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 187-215, January.
    11. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    12. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.
    13. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    14. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Andrea Gaunersdorfer & Cars Hommes, 2007. "A Nonlinear Structural Model for Volatility Clustering," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 265-288, Springer.
    16. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    17. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    18. Maurício Yoshinori Une & Marcelo Savino Portugal, 2005. "Fear of disruption: a model of Markov-switching regimes for the Brazilian country risk conditional volatility," Econometrics 0509005, University Library of Munich, Germany.
    19. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    20. Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sbe:breart:v:24:y:2004:i:2:a:2712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Núcleo de Computação da FGV EPGE (email available below). General contact details of provider: https://edirc.repec.org/data/sbeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.