IDEAS home Printed from https://ideas.repec.org/p/ibm/finlab/flwp_57.html
   My bibliography  Save this paper

Generalized Hyperbolic Distributions and Brazilian Data

Author

Listed:
  • Fajardo, J.
  • Farias, A.

Abstract

The aim of this paper is to discuss the use of the Generalized Hyperbolic Distributions to fit Brazilian assets returns. Selected subclasses are compared regarding goodness of fit statistics and distances. Empirical results show that these distributions fit data well. Then we show how to use these distributions in value at risk estimation and derivative price computation.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Fajardo, J. & Farias, A., 2003. "Generalized Hyperbolic Distributions and Brazilian Data," Finance Lab Working Papers flwp_57, Finance Lab, Insper Instituto de Ensino e Pesquisa.
  • Handle: RePEc:ibm:finlab:flwp_57
    as

    Download full text from publisher

    File URL: http://www.ibmecsp.edu.br/pesquisa/download.php?recid=2662
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Pereira, Pedro L. Valls & Hotta, Luiz K. & Souza, Luiz Alvares R. de & Almeida, Nuno Miguel C. G. de, 1999. "Alternative Models To Extract Asset Volatility: A Comparative Study," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    4. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    5. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    6. Issler, João Victor, 1999. "Estimating and Forecasting the Volatility of Brazilian Finance Series Using ARCH Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    7. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    8. Barbachan, José Fajardo & Schuschny, Andrés Ricardo & Silva, André de Castro, 2001. "Lévy processes and the Brazilian market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(2), November.
    9. Migon, Helio S. & Mazucheli, Josmar, 1999. "Modelos GARCH Bayesianos: Métodos Aproximados e Aplicações," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 19(1), May.
    10. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    2. Barbachan, José Fajardo & Schuschny, Andrés Ricardo & Silva, André de Castro, 2001. "Lévy processes and the Brazilian market," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 21(2), November.
    3. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    4. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    5. Marçal, Emerson F. & Valls Pereira, Pedro L., 2008. "Testando A Hipótese De Contágio A Partir De Modelos Multivariados De Volatilidade [Testing the contagion hypotheses using multivariate volatility models]," MPRA Paper 10356, University Library of Munich, Germany.
    6. Zdeněk Štolc, 2011. "Application of FIGARCH and EWMA Models on Stock Indices PX and BUX [Aplikace FIGARCH a EWMA modelů na burzovní indexy PX a BUX]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2011(4), pages 25-38.
    7. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    8. Su, Jung-Bin, 2014. "Empirical analysis of long memory, leverage, and distribution effects for stock market risk estimates," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 1-39.
    9. DAVID G. McMILLAN & ALAN E. H. SPEIGHT, 2007. "Value‐at‐Risk in Emerging Equity Markets: Comparative Evidence for Symmetric, Asymmetric, and Long‐Memory GARCH Models," International Review of Finance, International Review of Finance Ltd., vol. 7(1‐2), pages 1-19, March.
    10. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    11. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    12. Stavros Stavroyiannis & Leonidas Zarangas, 2013. "Out of Sample Value-at-Risk and Backtesting with the Standardized Pearson Type-IV Skewed Distribution," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 60(2), pages 231-247, April.
    13. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    14. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    15. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.
    16. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    17. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    18. Carol Alexander & José María Sarabia, 2012. "Quantile Uncertainty and Value‐at‐Risk Model Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1293-1308, August.
    19. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    20. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibm:finlab:flwp_57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ibmecbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Naercio Menezes (email available below). General contact details of provider: https://edirc.repec.org/data/ibmecbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.