IDEAS home Printed from https://ideas.repec.org/a/sae/urbstu/v40y2003i8p1573-1590.html
   My bibliography  Save this article

Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival

Author

Listed:
  • Michael Batty

    (Centre for Advanced Spatial Analysis, University College London, 1-19 Torrington Place, London, WC1E 6BT, UK, m.batty@ucl.ac.uk)

  • Jake Desyllas

    (Intelligent Space Partnership, 68 Great Eastern Street, London, EC4 6XZ, UK, jdesyllas@intelligentspace.com)

  • Elspeth Duxbury

    (Intelligent Space Partnership, 68 Great Eastern Street, London, EC4 6XZ, UK. Fax: 020 7739 9547, eduxbury@intelligentspace.com)

Abstract

Events such as carnivals, parades, rock concerts, football matches, some types of shopping-indeed, any situation involving rapid exit or entrance from or to high-capacity buildings and vehicles—pose significant problems of public safety. Models designed to predict crowding at such events are in their infancy and the best so far simulate panic situations and evacuation possibilities within buildings and similarly confined spaces. In carnivals and street parades, movement is over a much wider area and crowds form as much through competition between attractions as through confinement in small spaces. A model is proposed in which the event space is first explored by agents using 'swarm intelligence'. Armed with information about the space, agents then move in an unobstructed fashion to the event. Congestion is slowly reduced by introducing controls until a 'safe solution' is reached. The latter stages of the simulation require intervention by those who manage the event, the police. The model has been developed to simulate the effect of changing the route of the Notting Hill Carnival, an annual event held over two days in August each year in a 3 sq km area of west central London. The event attracts over 1 million visitors and is widely regarded as posing a major threat to public safety.

Suggested Citation

  • Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
  • Handle: RePEc:sae:urbstu:v:40:y:2003:i:8:p:1573-1590
    DOI: 10.1080/0042098032000094432
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1080/0042098032000094432
    Download Restriction: no

    File URL: https://libkey.io/10.1080/0042098032000094432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. David Batten, 2000. "Complex Landscapes of Spatial Interaction," Advances in Spatial Science, in: Aura Reggiani (ed.), Spatial Economic Science, chapter 4, pages 51-74, Springer.
    3. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    4. Aura Reggiani (ed.), 2000. "Spatial Economic Science," Advances in Spatial Science, Springer, number 978-3-642-59787-9, december.
    5. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horst Hamacher & Stephanie Heller & Benjamin Rupp, 2013. "Flow location (FlowLoc) problems: dynamic network flows and location models for evacuation planning," Annals of Operations Research, Springer, vol. 207(1), pages 161-180, August.
    2. Letizia Appolloni & Maria Vittoria Corazza & Daniela D’Alessandro, 2019. "The Pleasure of Walking: An Innovative Methodology to Assess Appropriate Walkable Performance in Urban Areas to Support Transport Planning," Sustainability, MDPI, vol. 11(12), pages 1-26, June.
    3. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    4. Peng, Wuyuan, 2011. "Coal sector reform and its implications for the power sector in China," Resources Policy, Elsevier, vol. 36(1), pages 60-71, March.
    5. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    2. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    3. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    4. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    5. Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
    6. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    8. Gao, Jin & He, Jun & Gong, Jinghai, 2020. "A simplified method to provide evacuation guidance in a multi-exit building under emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    10. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    11. Yamamoto, Kazuhiro & Kokubo, Satoshi & Nishinari, Katsuhiro, 2007. "Simulation for pedestrian dynamics by real-coded cellular automata (RCA)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 654-660.
    12. Yanyan Niu & Jia Yu & Dawei Lu & Renwu Mu & Jiahong Wen, 2022. "Spatial Allocation Method of Evacuation Guiders in Urban Open Public Spaces: A Case Study of Binjiang Green Space in Xuhui District, Shanghai, China," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    13. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    14. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    15. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    16. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    17. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    18. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    19. Tian, Huan-huan & Wei, Yan-fang & Dong, Li-yun & Xue, Yu & Zheng, Rong-sen, 2018. "Resolution of conflicts in cellular automaton evacuation model with the game-theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 991-1006.
    20. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:urbstu:v:40:y:2003:i:8:p:1573-1590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.gla.ac.uk/departments/urbanstudiesjournal .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.