IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v230y2016i6p533-544.html
   My bibliography  Save this article

Multi-state reliability assessment for hydraulic lifting system based on the theory of dynamic Bayesian networks

Author

Listed:
  • Chun Su
  • Ning Lin
  • Yequn Fu

Abstract

Mechanical systems and their components usually have multiple failure modes and different performance states. Most existing system reliability modelling theories are developed on the basis of binary logic, which lack sufficient ability to describe the above phenomena. In this article, dynamic Bayesian network theory is employed to evaluate the multi-state reliability of a hydraulic lifting system. First, failure mode and effect analysis and structural analysis and design technique are comprehensively applied to analyse the functionalities and failure modes of the components. Afterwards, the time factor is integrated into the model by considering the state transition of the components. In this way, the multi-state reliability model of the system is established by dynamic Bayesian network. The reliability assessment and diagnostic analysis are performed by taking advantage of the dynamic Bayesian network’s bi-directional reasoning ability, and the results are in good agreement with actual situation. It shows that the proposed approach is effective and convenient for multi-state reliability modelling and analysis for mechanical systems.

Suggested Citation

  • Chun Su & Ning Lin & Yequn Fu, 2016. "Multi-state reliability assessment for hydraulic lifting system based on the theory of dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 230(6), pages 533-544, December.
  • Handle: RePEc:sae:risrel:v:230:y:2016:i:6:p:533-544
    DOI: 10.1177/1748006X16660488
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X16660488
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X16660488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramírez, Pedro A. Pérez & Utne, Ingrid Bouwer, 2015. "Use of dynamic Bayesian networks for life extension assessment of ageing systems," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 119-136.
    2. Abou, Seraphin C., 2010. "Performance assessment of multi-state systems with critical failure modes: Application to the flotation metallic arsenic circuit," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 614-622.
    3. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    4. Ramirez-Marquez, Jose Emmanuel & Levitin, Gregory, 2008. "Algorithm for estimating reliability confidence bounds of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1231-1243.
    5. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaoge & Mahadevan, Sankaran & Deng, Xinyang, 2017. "Reliability analysis with linguistic data: An evidential network approach," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 111-121.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
    2. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.
    3. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    4. Haddad, Tarek & Himes, Adam & Campbell, Michael, 2014. "Fracture prediction of cardiac lead medical devices using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 145-157.
    5. Zhong, X. & Ichchou, M. & Saidi, A., 2010. "Reliability assessment of complex mechatronic systems using a modified nonparametric belief propagation algorithm," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1174-1185.
    6. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    7. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    9. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    10. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    11. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    12. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    13. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    14. Lindhe, Andreas & Norberg, Tommy & Rosén, Lars, 2012. "Approximate dynamic fault tree calculations for modelling water supply risks," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 61-71.
    15. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    16. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    17. Zhong, Shengtong & Langseth, Helge & Nielsen, Thomas Dyhre, 2014. "A classification-based approach to monitoring the safety of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 61-71.
    18. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    19. El-Awady, Ahmed & Ponnambalam, Kumaraswamy, 2021. "Integration of simulation and Markov Chains to support Bayesian Networks for probabilistic failure analysis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Morales-Nápoles, Oswaldo & Steenbergen, Raphaël D.J.M., 2014. "Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 153-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:230:y:2016:i:6:p:533-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.