IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v37y2017i7p747-758.html
   My bibliography  Save this article

A Review of Methods for Analysis of the Expected Value of Information

Author

Listed:
  • Anna Heath
  • Ioanna Manolopoulou
  • Gianluca Baio

Abstract

In recent years, value-of-information analysis has become more widespread in health economic evaluations, specifically as a tool to guide further research and perform probabilistic sensitivity analysis. This is partly due to methodological advancements allowing for the fast computation of a typical summary known as the expected value of partial perfect information (EVPPI). A recent review discussed some approximation methods for calculating the EVPPI, but as the research has been active over the intervening years, that review does not discuss some key estimation methods. Therefore, this paper presents a comprehensive review of these new methods. We begin by providing the technical details of these computation methods. We then present two case studies in order to compare the estimation performance of these new methods. We conclude that a method based on nonparametric regression offers the best method for calculating the EVPPI in terms of accuracy, computational time, and ease of implementation. This means that the EVPPI can now be used practically in health economic evaluations, especially as all the methods are developed in parallel with R functions and a web app to aid practitioners.

Suggested Citation

  • Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
  • Handle: RePEc:sae:medema:v:37:y:2017:i:7:p:747-758
    DOI: 10.1177/0272989X17697692
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X17697692
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X17697692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Madan & Anthony E. Ades & Malcolm Price & Kathryn Maitland & Julie Jemutai & Paul Revill & Nicky J. Welton, 2014. "Strategies for Efficient Computation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 34(3), pages 327-342, April.
    2. James C. Felli & Gordon B. Hazen, 1999. "A Bayesian approach to sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 263-268, May.
    3. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    4. Karl Claxton, 1999. "Bayesian approaches to the value of information: implications for the regulation of new pharmaceuticals," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 269-274, May.
    5. Jeffrey M. Keisler & Zachary A. Collier & Eric Chu & Nina Sinatra & Igor Linkov, 2014. "Value of information analysis: the state of application," Environment Systems and Decisions, Springer, vol. 34(1), pages 3-23, March.
    6. Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams & David Turner & Allan Wailoo, 2004. "Comprehensive decision analytical modelling in economic evaluation: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(3), pages 203-226, March.
    7. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    2. Laura McCullagh & Susanne Schmitz & Michael Barry & Cathal Walsh, 2017. "Examining the Feasibility and Utility of Estimating Partial Expected Value of Perfect Information (via a Nonparametric Approach) as Part of the Reimbursement Decision-Making Process in Ireland: Applic," PharmacoEconomics, Springer, vol. 35(11), pages 1177-1185, November.
    3. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    4. Michael Drummond & Carlo Federici & Vivian Reckers‐Droog & Aleksandra Torbica & Carl Rudolf Blankart & Oriana Ciani & Zoltán Kaló & Sándor Kovács & Werner Brouwer, 2022. "Coverage with evidence development for medical devices in Europe: Can practice meet theory?," Health Economics, John Wiley & Sons, Ltd., vol. 31(S1), pages 179-194, September.
    5. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    6. Hendrik Koffijberg & Claire Rothery & Kalipso Chalkidou & Janneke Grutters, 2018. "Value of Information Choices that Influence Estimates: A Systematic Review of Prevailing Considerations," Medical Decision Making, , vol. 38(7), pages 888-900, October.
    7. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    2. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    3. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    4. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2018. "Efficient Monte Carlo Estimation of the Expected Value of Sample Information Using Moment Matching," Medical Decision Making, , vol. 38(2), pages 163-173, February.
    5. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    6. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    7. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    8. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    9. Eric Jutkowitz & Fernando Alarid-Escudero & Hyon K. Choi & Karen M. Kuntz & Hawre Jalal, 2017. "Prioritizing Future Research on Allopurinol and Febuxostat for the Management of Gout: Value of Information Analysis," PharmacoEconomics, Springer, vol. 35(10), pages 1073-1085, October.
    10. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    11. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    12. Anna Heath & Mark Strong & David Glynn & Natalia Kunst & Nicky J. Welton & Jeremy D. Goldhaber-Fiebert, 2022. "Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial," Medical Decision Making, , vol. 42(2), pages 143-155, February.
    13. Hawre Jalal & Jeremy D. Goldhaber-Fiebert & Karen M. Kuntz, 2015. "Computing Expected Value of Partial Sample Information from Probabilistic Sensitivity Analysis Using Linear Regression Metamodeling," Medical Decision Making, , vol. 35(5), pages 584-595, July.
    14. Christopher H. Jackson & Linda D. Sharples & Simon G. Thompson, 2010. "Structural and parameter uncertainty in Bayesian cost‐effectiveness models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 233-253, March.
    15. Xuanqian Xie & Alexis K. Schaink & Sichen Liu & Myra Wang & Andrei Volodin, 2023. "Understanding bias in probabilistic analysis in model-based health economic evaluation," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(2), pages 307-319, March.
    16. Stefano Conti & Karl Claxton, 2009. "Dimensions of Design Space: A Decision-Theoretic Approach to Optimal Research Design," Medical Decision Making, , vol. 29(6), pages 643-660, November.
    17. Björn Stollenwerk & Stefan K. Lhachimi & Andrew Briggs & Elisabeth Fenwick & Jaime J. Caro & Uwe Siebert & Marion Danner & Andreas Gerber‐Grote, 2015. "Communicating the Parameter Uncertainty in the IQWiG Efficiency Frontier to Decision‐Makers," Health Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 481-490, April.
    18. Torbjørn Wisløff & Gunhild Hagen & Marianne Klemp, 2014. "Economic Evaluation of Warfarin, Dabigatran, Rivaroxaban, and Apixaban for Stroke Prevention in Atrial Fibrillation," PharmacoEconomics, Springer, vol. 32(6), pages 601-612, June.
    19. Devin Incerti & Jeffrey R. Curtis & Jason Shafrin & Darius N. Lakdawalla & Jeroen P. Jansen, 2019. "A Flexible Open-Source Decision Model for Value Assessment of Biologic Treatment for Rheumatoid Arthritis," PharmacoEconomics, Springer, vol. 37(6), pages 829-843, June.
    20. Christopher H. Jackson & Laura Bojke & Simon G. Thompson & Karl Claxton & Linda D. Sharples, 2011. "A Framework for Addressing Structural Uncertainty in Decision Models," Medical Decision Making, , vol. 31(4), pages 662-674, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:37:y:2017:i:7:p:747-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.