IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02386483.html
   My bibliography  Save this paper

Informed and uninformed empirical therapy policies

Author

Listed:
  • Julien Flaig

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

  • Nicolas Houy

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We argue that a proper distinction must be made between informed and uninformed decision making when setting empirical therapy policies, as this allows one to estimate the value of gathering more information about the pathogens and their transmission and thus to set research priorities. We rely on the stochastic version of a compartmental model to describe the spread of an infecting organism in a health care facility and the emergence and spread of resistance to two drugs. We focus on information and uncertainty regarding the parameters of this model. We consider a family of adaptive empirical therapy policies. In the uninformed setting, the best adaptive policy allowsone to reduce the average cumulative infected patient days over 2 years by 39.3% (95% confidence interval (CI), 30.3-48.1%) compared to the combination therapy. Choosing empirical therapy policies while knowing the exact parameter values allows one to further decrease the cumulative infected patient days by 3.9% (95% CI, 2.1-5.8%) on average. In our setting, the benefit of perfect information might be offset by increased drug consumption.

Suggested Citation

  • Julien Flaig & Nicolas Houy, 2019. "Informed and uninformed empirical therapy policies," Post-Print halshs-02386483, HAL.
  • Handle: RePEc:hal:journl:halshs-02386483
    DOI: 10.1093/imammb/dqz015
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02386483v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02386483v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1093/imammb/dqz015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    2. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.
    2. Gordon Hazen & Emanuele Borgonovo & Xuefei Lu, 2023. "Information Density in Decision Analysis," Decision Analysis, INFORMS, vol. 20(2), pages 89-108, June.
    3. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    4. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    5. Nicky Welton & A. E. Ades, 2012. "Research Decisions In The Face Of Heterogeneity: What Can A New Study Tell Us?," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1196-1200, October.
    6. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    7. Martin Henriksson & Fredrik Lundgren & Per Carlsson, 2006. "Informing the efficient use of health care and health care research resources ‐ the case of screening for abdominal aortic aneurysm in Sweden," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1311-1322, December.
    8. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    9. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    10. Doug Coyle & Jeremy Oakley, 2008. "Estimating the expected value of partial perfect information: a review of methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 9(3), pages 251-259, August.
    11. Vicki M. Bier & Shi‐Woei Lin, 2013. "On the Treatment of Uncertainty and Variability in Making Decisions About Risk," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1899-1907, October.
    12. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    13. Laura McCullagh & Susanne Schmitz & Michael Barry & Cathal Walsh, 2017. "Examining the Feasibility and Utility of Estimating Partial Expected Value of Perfect Information (via a Nonparametric Approach) as Part of the Reimbursement Decision-Making Process in Ireland: Applic," PharmacoEconomics, Springer, vol. 35(11), pages 1177-1185, November.
    14. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    15. Fleurence, Rachael L. & Torgerson, David J., 2004. "Setting priorities for research," Health Policy, Elsevier, vol. 69(1), pages 1-10, July.
    16. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.
    17. Patrycja L. Gradowska & Roger M. Cooke, 2014. "Estimating expected value of information using Bayesian belief networks: a case study in fish consumption advisory," Environment Systems and Decisions, Springer, vol. 34(1), pages 88-97, March.
    18. Zitrou, A. & Bedford, T. & Daneshkhah, A., 2013. "Robustness of maintenance decisions: Uncertainty modelling and value of information," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 60-71.
    19. James C. Felli & Gordon B. Hazen, 1999. "A Bayesian approach to sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 263-268, May.
    20. Francisco Javier Díez & Manuel Arias & Jorge Pérez-Martín & Manuel Luque, 2022. "Teaching Probabilistic Graphical Models with OpenMarkov," Mathematics, MDPI, vol. 10(19), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02386483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.