IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v34y2014i3p327-342.html
   My bibliography  Save this article

Strategies for Efficient Computation of the Expected Value of Partial Perfect Information

Author

Listed:
  • Jason Madan
  • Anthony E. Ades
  • Malcolm Price
  • Kathryn Maitland
  • Julie Jemutai
  • Paul Revill
  • Nicky J. Welton

Abstract

Expected value of information methods evaluate the potential health benefits that can be obtained from conducting new research to reduce uncertainty in the parameters of a cost-effectiveness analysis model, hence reducing decision uncertainty. Expected value of partial perfect information (EVPPI) provides an upper limit to the health gains that can be obtained from conducting a new study on a subset of parameters in the cost-effectiveness analysis and can therefore be used as a sensitivity analysis to identify parameters that most contribute to decision uncertainty and to help guide decisions around which types of study are of most value to prioritize for funding. A common general approach is to use nested Monte Carlo simulation to obtain an estimate of EVPPI. This approach is computationally intensive, can lead to significant sampling bias if an inadequate number of inner samples are obtained, and incorrect results can be obtained if correlations between parameters are not dealt with appropriately. In this article, we set out a range of methods for estimating EVPPI that avoid the need for nested simulation: reparameterization of the net benefit function, Taylor series approximations, and restricted cubic spline estimation of conditional expectations. For each method, we set out the generalized functional form that net benefit must take for the method to be valid. By specifying this functional form, our methods are able to focus on components of the model in which approximation is required, avoiding the complexities involved in developing statistical approximations for the model as a whole. Our methods also allow for any correlations that might exist between model parameters. We illustrate the methods using an example of fluid resuscitation in African children with severe malaria.

Suggested Citation

  • Jason Madan & Anthony E. Ades & Malcolm Price & Kathryn Maitland & Julie Jemutai & Paul Revill & Nicky J. Welton, 2014. "Strategies for Efficient Computation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 34(3), pages 327-342, April.
  • Handle: RePEc:sae:medema:v:34:y:2014:i:3:p:327-342
    DOI: 10.1177/0272989X13514774
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X13514774
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X13514774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. D. Stevenson & J. Oakley & J. B. Chilcott, 2004. "Gaussian Process Modeling in Conjunction with Individual Patient Simulation Modeling: A Case Study Describing the Calculation of Cost-Effectiveness Ratios for the Treatment of Established Osteoporosis," Medical Decision Making, , vol. 24(1), pages 89-100, January.
    2. N. J. Welton & A. E. Ades & D. M. Caldwell & T. J. Peters, 2008. "Research prioritization based on expected value of partial perfect information: a case‐study on interventions to increase uptake of breast cancer screening," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 807-841, October.
    3. Kimberly M. Thompson & John S. Evans, 1997. "The Value of Improved National Exposure Information for Perchloroethylene (Perc): A Case Study for Dry Cleaners," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 253-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    2. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditya Sai & Carolina Vivas-Valencia & Thomas F. Imperiale & Nan Kong, 2019. "Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes," Medical Decision Making, , vol. 39(5), pages 540-552, July.
    2. Nicky Welton & A. E. Ades, 2012. "Research Decisions In The Face Of Heterogeneity: What Can A New Study Tell Us?," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1196-1200, October.
    3. Neil Hawkins & Mark Sculpher & David Epstein, 2005. "Cost-Effectiveness Analysis of Treatments for Chronic Disease: Using R to Incorporate Time Dependency of Treatment Response," Medical Decision Making, , vol. 25(5), pages 511-519, September.
    4. Edgar G. Hertwich & Thomas E. McKone & William S. Pease, 1999. "Parameter Uncertainty and Variability In Evaluative Fate and Exposure Models," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1193-1204, December.
    5. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    6. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    7. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    8. Fumie Yokota & George Gray & James K. Hammitt & Kimberly M. Thompson, 2004. "Tiered Chemical Testing: A Value of Information Approach," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1625-1639, December.
    9. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    10. Richard A. Williams & Kimberly M. Thompson, 2004. "Integrated Analysis: Combining Risk and Economic Assessments While Preserving the Separation of Powers," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1613-1623, December.
    11. Afschin Gandjour, 2010. "Investment in quality improvement: how to maximize the return," Health Economics, John Wiley & Sons, Ltd., vol. 19(1), pages 31-42, January.
    12. Nicky J. Welton & Jason J. Madan & Deborah M. Caldwell & Tim J. Peters & Anthony E. Ades, 2014. "Expected Value of Sample Information for Multi-Arm Cluster Randomized Trials with Binary Outcomes," Medical Decision Making, , vol. 34(3), pages 352-365, April.
    13. Mark Strong & Jeremy E. Oakley & Alan Brennan, 2014. "Estimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample," Medical Decision Making, , vol. 34(3), pages 311-326, April.
    14. Bas Groot Koerkamp & Theo Stijnen & Milton C. Weinstein & M. G. Myriam Hunink, 2011. "The Combined Analysis of Uncertainty and Patient Heterogeneity in Medical Decision Models," Medical Decision Making, , vol. 31(4), pages 650-661, July.
    15. Sung, Hwansoo & Shortle, James S., 2006. "The Expected Value of Sample Information Analysis for Nonpoint Water Quality Management," 2006 Annual meeting, July 23-26, Long Beach, CA 21296, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. A. E. Ades & S. Cliffe, 2002. "Markov Chain Monte Carlo Estimation of a Multiparameter Decision Model: Consistency of Evidence and the Accurate Assessment of Uncertainty," Medical Decision Making, , vol. 22(4), pages 359-371, August.
    17. Christopher H. Jackson & Simon G. Thompson & Linda D. Sharples, 2009. "Accounting for uncertainty in health economic decision models by using model averaging," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 383-404, April.
    18. Andrew Willan & Simon Eckermann, 2012. "Value of Information and Pricing New Healthcare Interventions," PharmacoEconomics, Springer, vol. 30(6), pages 447-459, June.
    19. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    20. Deborah H. Bennett & Manuele D. Margni & Thomas E. McKone & Olivier Jolliet, 2002. "Intake Fraction for Multimedia Pollutants: A Tool for Life Cycle Analysis and Comparative Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 905-918, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:34:y:2014:i:3:p:327-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.