IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/00-39.html
   My bibliography  Save this paper

Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease

Author

Listed:
  • K. Claxton
  • P. J. Neumannn
  • S. S. Araki
  • M. C. Weinstein

Abstract

A framework is presented which distinguishes the conceptually separate decisions of which treatment strategy is optimal from the question of whether more information is required to inform this choice in the future. The authors argue that the choice of treatment strategy should be based on expected utility and the only valid reason to characterise the uncertainty surrounding outcomes of interest is to establish the value of acquiring additional information. A Bayesian decision theoretic approach is demonstrated though a probabilistic analysis of a published policy model of Alzheimer’s disease. The expected value of perfect information is estimated for the decision to adopt a new pharmaceutical for the population of US Alzheimer’s disease patients. This provides an upper bound on the value of additional research. The value of information is also estimated for each of the model inputs. This analysis can focus future research by identifying those parameters where more precise estimates would be most valuable, and indicating whether an experimental design would be required. We also discuss how this type of analysis can also be used to design experimental research efficiently (identifying optimal sample size and optimal sample allocation) based on the marginal cost and marginal benefit of sample information. Value-of-information analysis can provide a measure of the expected payoff from proposed research, which can be used to set priorities in research and development. It can also inform an efficient regulatory framework for new health care technologies: an analysis of the value of information would define when a claim for a new technology should be deemed “substantiated” and when evidence should be considered “competent and reliable” when it is not cost-effective to gather anymore information.

Suggested Citation

  • K. Claxton & P. J. Neumannn & S. S. Araki & M. C. Weinstein, "undated". "Bayesian Value-of-Information Analysis: An Application to a Policy Model of Alzheimer's Disease," Discussion Papers 00/39, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:00/39
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2000/0039.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claxton, K. & Thompson, K. M., 2001. "A dynamic programming approach to the efficient design of clinical trials," Journal of Health Economics, Elsevier, vol. 20(5), pages 797-822, September.
    2. Garber, Alan M. & Phelps, Charles E., 1997. "Economic foundations of cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 16(1), pages 1-31, February.
    3. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    4. Kimberly M. Thompson & John S. Evans, 1997. "The Value of Improved National Exposure Information for Perchloroethylene (Perc): A Case Study for Dry Cleaners," Risk Analysis, John Wiley & Sons, vol. 17(2), pages 253-271, April.
    5. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    6. Peter Doubilet & Colin B. Begg & Milton C. Weinstein & Peter Braun & Barbara J. McNeil, 1985. "Probabilistic Sensitivity Analysis Using Monte Carlo Simulation," Medical Decision Making, , vol. 5(2), pages 157-177, June.
    7. Karl Claxton & John Posnett, "undated". "An Economic Approach to Clinical Trial Design and Research Priority Setting," Discussion Papers 96/19, Department of Economics, University of York.
    8. Andrew H. Briggs, 1999. "A Bayesian approach to stochastic cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 257-261, May.
    9. Pratt, John W & Zeckhauser, Richard J, 1996. "Willingness to Pay and the Distribution of Risk and Wealth," Journal of Political Economy, University of Chicago Press, vol. 104(4), pages 747-763, August.
    10. Kimberly M. Thompson & David E. Burmaster & Edmund A.C. Crouch3, 1992. "Monte Carlo Techniques for Quantitative Uncertainty Analysis in Public Health Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 12(1), pages 53-63, March.
    11. Karl Claxton, 1999. "Bayesian approaches to the value of information: implications for the regulation of new pharmaceuticals," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 269-274, May.
    12. McClellan, Mark & Newhouse, Joseph P., 1997. "The marginal cost-effectiveness of medical technology: A panel instrumental-variables approach," Journal of Econometrics, Elsevier, vol. 77(1), pages 39-64, March.
    13. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douglas Coyle & Martin J. Buxton & Bernie J. O'Brien, 2003. "Stratified cost‐effectiveness analysis: a framework for establishing efficient limited use criteria," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 421-427, May.
    2. Doug Coyle & Jeremy Oakley, 2008. "Estimating the expected value of partial perfect information: a review of methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 9(3), pages 251-259, August.
    3. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    4. David Cohen & Mirella F Longo & John Williams & Wai‐yee Cheung & Hayley Hutchings & I.T. Russell, 2003. "Estimating the marginal value of ‘better’ research output: ‘designed’ versus ‘routine’ data in randomised controlled trials," Health Economics, John Wiley & Sons, Ltd., vol. 12(11), pages 959-974, November.
    5. Bas Groot Koerkamp & M. G. Myriam Hunink & Theo Stijnen & Milton C. Weinstein, 2006. "Identifying key parameters in cost‐effectiveness analysis using value of information: a comparison of methods," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 383-392, April.
    6. Douglas Coyle, 2003. "Determining the optimal combinations of mutually exclusive interventions: a response to Hutubessy and colleagues," Health Economics, John Wiley & Sons, Ltd., vol. 12(2), pages 159-162, February.
    7. Sung, Hwansoo & Shortle, James S., 2006. "The Expected Value of Sample Information Analysis for Nonpoint Water Quality Management," 2006 Annual meeting, July 23-26, Long Beach, CA 21296, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Conti & Karl Claxton, 2008. "Dimensions of design space: a decision-theoretic approach to optimal research design," Working Papers 038cherp, Centre for Health Economics, University of York.
    2. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225, November.
    3. Alan Brennan & Samer A. Kharroubi, 2007. "Expected value of sample information for Weibull survival data," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1205-1225.
    4. Elizabeth Fenwick & Karl Claxton & Mark Sculpher & Andrew Briggs, 2000. "Improving the efficiency and relevance of health technology assessent: the role of iterative decision analytic modelling," Working Papers 179chedp, Centre for Health Economics, University of York.
    5. A. E. Ades & G. Lu & K. Claxton, 2004. "Expected Value of Sample Information Calculations in Medical Decision Modeling," Medical Decision Making, , vol. 24(2), pages 207-227, March.
    6. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    7. Karnon, Jonathan, 2002. "Planning the efficient allocation of research funds: an adapted application of a non-parametric Bayesian value of information analysis," Health Policy, Elsevier, vol. 61(3), pages 329-347, September.
    8. Claxton, K. & Thompson, K. M., 2001. "A dynamic programming approach to the efficient design of clinical trials," Journal of Health Economics, Elsevier, vol. 20(5), pages 797-822, September.
    9. Simon Eckermann & Andrew R. Willan, 2009. "Globally optimal trial design for local decision making," Health Economics, John Wiley & Sons, Ltd., vol. 18(2), pages 203-216, February.
    10. N. J. Welton & A. E. Ades & D. M. Caldwell & T. J. Peters, 2008. "Research prioritization based on expected value of partial perfect information: a case‐study on interventions to increase uptake of breast cancer screening," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 807-841, October.
    11. Karl Claxton, 1999. "Bayesian approaches to the value of information: implications for the regulation of new pharmaceuticals," Health Economics, John Wiley & Sons, Ltd., vol. 8(3), pages 269-274, May.
    12. Andrew Willan, 2011. "Sample Size Determination for Cost-Effectiveness Trials," PharmacoEconomics, Springer, vol. 29(11), pages 933-949, November.
    13. Claxton, Karl, 1999. "The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies," Journal of Health Economics, Elsevier, vol. 18(3), pages 341-364, June.
    14. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    15. Karl Claxton & Elisabeth Fenwick & Mark J. Sculpher, 2012. "Decision-making with Uncertainty: The Value of Information," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 51, Edward Elgar Publishing.
    16. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    17. Rachael L. Fleurence, 2007. "Setting priorities for research: a practical application of 'payback' and expected value of information," Health Economics, John Wiley & Sons, Ltd., vol. 16(12), pages 1345-1357.
    18. Samer A. Kharroubi & Alan Brennan & Mark Strong, 2011. "Estimating Expected Value of Sample Information for Incomplete Data Models Using Bayesian Approximation," Medical Decision Making, , vol. 31(6), pages 839-852, November.
    19. Claire McKenna & Karl Claxton, 2011. "Addressing Adoption and Research Design Decisions Simultaneously," Medical Decision Making, , vol. 31(6), pages 853-865, November.
    20. Andrew R. Willan & Matthew E. Kowgier, 2008. "Cost‐effectiveness analysis of a multinational RCT with a binary measure of effectiveness and an interacting covariate," Health Economics, John Wiley & Sons, Ltd., vol. 17(7), pages 777-791, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:00/39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Hodgson (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.