IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v37y2017i7p735-746.html
   My bibliography  Save this article

An Overview of R in Health Decision Sciences

Author

Listed:
  • Hawre Jalal
  • Petros Pechlivanoglou
  • Eline Krijkamp
  • Fernando Alarid-Escudero
  • Eva Enns
  • M. G. Myriam Hunink

Abstract

As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R’s popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.

Suggested Citation

  • Hawre Jalal & Petros Pechlivanoglou & Eline Krijkamp & Fernando Alarid-Escudero & Eva Enns & M. G. Myriam Hunink, 2017. "An Overview of R in Health Decision Sciences," Medical Decision Making, , vol. 37(7), pages 735-746, October.
  • Handle: RePEc:sae:medema:v:37:y:2017:i:7:p:735-746
    DOI: 10.1177/0272989X16686559
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X16686559
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X16686559?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven M. Shechter & Matthew D. Bailey & Andrew J. Schaefer & Mark S. Roberts, 2008. "The Optimal Time to Initiate HIV Therapy Under Ordered Health States," Operations Research, INFORMS, vol. 56(1), pages 20-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chase Hollman & Mike Paulden & Petros Pechlivanoglou & Christopher McCabe, 2017. "A Comparison of Four Software Programs for Implementing Decision Analytic Cost-Effectiveness Models," PharmacoEconomics, Springer, vol. 35(8), pages 817-830, August.
    2. Ke Gong & Ting Xie & Yong Luo & Hui Guo & Jinlan Chen & Zhiping Tan & Yifeng Yang & Li Xie, 2021. "Comprehensive analysis of lncRNA biomarkers in kidney renal clear cell carcinoma by lncRNA-mediated ceRNA network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mason, J.E. & Denton, B.T. & Shah, N.D. & Smith, S.A., 2014. "Optimizing the simultaneous management of blood pressure and cholesterol for type 2 diabetes patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 727-738.
    2. Wenjuan Fan & Yang Zong & Subodha Kumar, 2022. "Optimal treatment of chronic kidney disease with uncertainty in obtaining a transplantable kidney: an MDP based approach," Annals of Operations Research, Springer, vol. 316(1), pages 269-302, September.
    3. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    4. Oguzhan Alagoz & Jagpreet Chhatwal & Elizabeth S. Burnside, 2013. "Optimal Policies for Reducing Unnecessary Follow-Up Mammography Exams in Breast Cancer Diagnosis," Decision Analysis, INFORMS, vol. 10(3), pages 200-224, September.
    5. Dan Andrei Iancu & Nikolaos Trichakis & Do Young Yoon, 2021. "Monitoring with Limited Information," Management Science, INFORMS, vol. 67(7), pages 4233-4251, July.
    6. M. Reza Skandari & Steven M. Shechter, 2021. "Patient-Type Bayes-Adaptive Treatment Plans," Operations Research, INFORMS, vol. 69(2), pages 574-598, March.
    7. M. Reza Skandari & Steven M. Shechter & Nadia Zalunardo, 2015. "Optimal Vascular Access Choice for Patients on Hemodialysis," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 608-619, October.
    8. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.
    9. Hessam Bavafa & Sergei Savin & Christian Terwiesch, 2021. "Customizing Primary Care Delivery Using E‐Visits," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4306-4327, November.
    10. Jennifer E. Mason & Darin A. England & Brian T. Denton & Steven A. Smith & Murat Kurt & Nilay D. Shah, 2012. "Optimizing Statin Treatment Decisions for Diabetes Patients in the Presence of Uncertain Future Adherence," Medical Decision Making, , vol. 32(1), pages 154-166, January.
    11. Chris P. Lee & Glenn M. Chertow & Stefanos A. Zenios, 2008. "Optimal Initiation and Management of Dialysis Therapy," Operations Research, INFORMS, vol. 56(6), pages 1428-1449, December.
    12. Yan Yang & Jeremy D. Goldhaber-Fiebert & Lawrence M. Wein, 2013. "Analyzing Screening Policies for Childhood Obesity," Management Science, INFORMS, vol. 59(4), pages 782-795, April.
    13. Erik Rosenstrom & Sareh Meshkinfam & Julie Simmons Ivy & Shadi Hassani Goodarzi & Muge Capan & Jeanne Huddleston & Santiago Romero-Brufau, 2022. "Optimizing the First Response to Sepsis: An Electronic Health Record-Based Markov Decision Process Model," Decision Analysis, INFORMS, vol. 19(4), pages 265-296, December.
    14. Zlatana Nenova & Jennifer Shang, 2022. "Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 583-606, February.
    15. Gong, Jue & Liu, Shan, 2023. "Partially observable collaborative model for optimizing personalized treatment selection," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1409-1419.
    16. Nazila Bazrafshan & M. M. Lotfi, 2020. "A finite-horizon Markov decision process model for cancer chemotherapy treatment planning: an application to sequential treatment decision making in clinical trials," Annals of Operations Research, Springer, vol. 295(1), pages 483-502, December.
    17. Amin Khademi & Denis R. Saure & Andrew J. Schaefer & Ronald S. Braithwaite & Mark S. Roberts, 2015. "The Price of Nonabandonment: HIV in Resource-Limited Settings," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 554-570, October.
    18. Ting-Yu Ho & Shan Liu & Zelda B. Zabinsky, 2019. "A Multi-Fidelity Rollout Algorithm for Dynamic Resource Allocation in Population Disease Management," Health Care Management Science, Springer, vol. 22(4), pages 727-755, December.
    19. Jonathan E. Helm & Mariel S. Lavieri & Mark P. Van Oyen & Joshua D. Stein & David C. Musch, 2015. "Dynamic Forecasting and Control Algorithms of Glaucoma Progression for Clinician Decision Support," Operations Research, INFORMS, vol. 63(5), pages 979-999, October.
    20. Kang, Yuncheol & Sawyer, Amy M. & Griffin, Paul M. & Prabhu, Vittaldas V., 2016. "Modelling adherence behaviour for the treatment of obstructive sleep apnoea," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1005-1013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:37:y:2017:i:7:p:735-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.