IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v44y2017i5p925-946.html
   My bibliography  Save this article

A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design

Author

Listed:
  • Marcelo G Miguez
  • Aline P Veról

Abstract

Urban floods are becoming a great concern of growing cities. Urban growth pressed by poverty and social drivers, together with possible climate change, may pose difficult challenges and increasing risk to safety and urban livability. In the face of this growing risk, urban drainage management is being pressed to move towards a flood risk management approach and that builds city resilience, or the capacity to continue functioning even in future hazardous conditions. In this context, this study proposes the development of an integrated Flood Resilience Index, departing from mathematical modelling tools and flood risk concepts. The Flood Resilience Index was built to support decision-making process in choosing design alternatives that improve flood control responses in future scenarios that surpass design standards. This way, flood control design decisions would be made under a quantitative assessment of the performance of a design alternative on potential flooding events in the long term. Flood Resilience Index was successfully tested in a watershed in the metropolitan region of Rio de Janeiro/Brazil where there is uncontrolled urban growth. It identified the best alternative to be a combined approach including sustainable urban drainage measures with river restoration techniques. When looking to the city centre area, this alternative scored a Flood Resilience Index of 47 over 100 against a conservative alternative of a dam, which only scored 20.

Suggested Citation

  • Marcelo G Miguez & Aline P Veról, 2017. "A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control design," Environment and Planning B, , vol. 44(5), pages 925-946, September.
  • Handle: RePEc:sae:envirb:v:44:y:2017:i:5:p:925-946
    DOI: 10.1177/0265813516655799
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813516655799
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813516655799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abhas K. Jha & Robin Bloch & Jessica Lamond, . "Cities and Flooding : A Guide to Integrated Urban Flood Risk Management for the 21st Century [Ciudades e Inundaciones : guía para la gestión integrada del riesgo de inundaciones en ciudades en el S," World Bank Publications, The World Bank, number 2241, September.
    2. Neeraj Prasad & Federica Ranghieri & Fatima Shah & Zoe Trohanis & Earl Kessler & Ravi Sinha, 2009. "Climate Resilient Cities : A Primer on Reducing Vulnerabilities to Disasters," World Bank Publications - Books, The World Bank Group, number 11986, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    2. Somayeh Ahmadi & Rezvan Ghanbari Movahed & Saeed Gholamrezaie & Mehdi Rahimian, 2022. "Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    3. Matthias Garschagen, 2013. "Resilience and organisational institutionalism from a cross-cultural perspective: an exploration based on urban climate change adaptation in Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(1), pages 25-46, May.
    4. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    5. Jose Cobian & Budy P. Resosudarmo & Alin Halimatussadiah & Susan Olivia, 2022. "Demand for index-based flood insurance in Jakarta, Indonesia," Departmental Working Papers 2022-12, The Australian National University, Arndt-Corden Department of Economics.
    6. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    7. Rotimi Joseph & David Proverbs & Jessica Lamond, 2015. "Assessing the value of intangible benefits of property level flood risk adaptation (PLFRA) measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1275-1297, November.
    8. Katy Cornwell & Titik Anas, 2013. "Survey of recent developments," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 49(1), pages 7-33, April.
    9. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    10. Deborah Balk & Mark R. Montgomery & Hasim Engin & Natalie Lin & Elizabeth Major & Bryan Jones, 2019. "Urbanization in India: Population and Urban Classification Grids for 2011," Data, MDPI, vol. 4(1), pages 1-16, February.
    11. Ashu Tiwari & Archana Patro, 2018. "Memory, Risk Aversion, and Nonlife Insurance Consumption: Evidence from Emerging and Developing Markets," Risks, MDPI, vol. 6(4), pages 1-17, December.
    12. Edna M. Rodríguez-Gaviria & Sol Ochoa-Osorio & Alejandro Builes-Jaramillo & Verónica Botero-Fernández, 2019. "Computational Bottom-Up Vulnerability Indicator for Low-Income Flood-Prone Urban Areas," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    13. Kristian Saguin, 2017. "Producing an urban hazardscape beyond the city," Environment and Planning A, , vol. 49(9), pages 1968-1985, September.
    14. Rocco Custer & Kazuyoshi Nishijima, 2015. "Flood vulnerability assessment of residential buildings by explicit damage process modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 461-496, August.
    15. Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Urban Flood Hazard Assessment and Management Practices in South Asia: A Review," Land, MDPI, vol. 12(3), pages 1-29, March.
    16. Mark Stevens & Steve Hanschka, 2014. "Municipal flood hazard mapping: the case of British Columbia, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 907-932, September.
    17. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.
    18. Saidou Oumarou Mahamane & Amadou Oumarou & María José Piñeira Mantiñán, 2023. "Improving Public Action to Mitigate River Flooding in Niamey (Niger)," Land, MDPI, vol. 12(8), pages 1-18, July.
    19. Lee, Yoonjeong & Brody, Samuel D., 2018. "Examining the impact of land use on flood losses in Seoul, Korea," Land Use Policy, Elsevier, vol. 70(C), pages 500-509.
    20. Febi Dwirahmadi & Shannon Rutherford & Dung Phung & Cordia Chu, 2019. "Understanding the Operational Concept of a Flood-Resilient Urban Community in Jakarta, Indonesia, from the Perspectives of Disaster Risk Reduction, Climate Change Adaptation and Development Agencies," IJERPH, MDPI, vol. 16(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:44:y:2017:i:5:p:925-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.