IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i1p35-d209214.html
   My bibliography  Save this article

Urbanization in India: Population and Urban Classification Grids for 2011

Author

Listed:
  • Deborah Balk

    (CUNY Institute for Demographic Research, City University of New York, New York, NY 10010, USA
    Baruch College Marxe School of Public and International Affairs, City University of New York, New York, NY 10017, USA)

  • Mark R. Montgomery

    (Population Council, New York, NY 10017, USA
    Stony Brook University, New York, NY 11794, USA)

  • Hasim Engin

    (CUNY Institute for Demographic Research, City University of New York, New York, NY 10010, USA)

  • Natalie Lin

    (CUNY Institute for Demographic Research, City University of New York, New York, NY 10010, USA)

  • Elizabeth Major

    (CUNY Institute for Demographic Research, City University of New York, New York, NY 10010, USA)

  • Bryan Jones

    (CUNY Institute for Demographic Research, City University of New York, New York, NY 10010, USA
    Baruch College Marxe School of Public and International Affairs, City University of New York, New York, NY 10017, USA)

Abstract

India is the world’s most populous country, yet also one of the least urban. It has long been known that India’s official estimates of urban percentages conflict with estimates derived from alternative conceptions of urbanization. To date, however, the detailed spatial and settlement boundary data needed to analyze and reconcile these differences have not been available. This paper presents gridded estimates of population at a resolution of 1 km along with two spatial renderings of urban areas—one based on the official tabulations of population and settlement types (i.e., statutory towns, outgrowths, and census towns) and the other on remotely-sensed measures of built-up land derived from the Global Human Settlement Layer. We also cross-classified the census data and the remotely-sensed data to construct a hybrid representation of the continuum of urban settlement. In their spatial detail, these materials go well beyond what has previously been available in the public domain, and thereby provide an empirical basis for comparison among competing conceptual models of urbanization.

Suggested Citation

  • Deborah Balk & Mark R. Montgomery & Hasim Engin & Natalie Lin & Elizabeth Major & Bryan Jones, 2019. "Urbanization in India: Population and Urban Classification Grids for 2011," Data, MDPI, vol. 4(1), pages 1-16, February.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:1:p:35-:d:209214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/1/35/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/1/35/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abhas K. Jha & Robin Bloch & Jessica Lamond, . "Cities and Flooding : A Guide to Integrated Urban Flood Risk Management for the 21st Century [Ciudades e Inundaciones : guía para la gestión integrada del riesgo de inundaciones en ciudades en el S," World Bank Publications, The World Bank, number 2241, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiyu Li & Le Yu & Xin Chen, 2023. "New Insights into Urbanization Based on Global Mapping and Analysis of Human Settlements in the Rural–Urban Continuum," Land, MDPI, vol. 12(8), pages 1-23, August.
    2. Shruti Kanga & Suraj Kumar Singh & Gowhar Meraj & Anup Kumar & Ruby Parveen & Nikola Kranjčić & Bojan Đurin, 2022. "Assessment of the Impact of Urbanization on Geoenvironmental Settings Using Geospatial Techniques: A Study of Panchkula District, Haryana," Geographies, MDPI, vol. 2(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    2. Neslihan Beden & Asli Ulke Keskin, 2021. "Estimation of the local financial costs of flood damage with different methodologies in Unye (Ordu), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2835-2854, September.
    3. Somayeh Ahmadi & Rezvan Ghanbari Movahed & Saeed Gholamrezaie & Mehdi Rahimian, 2022. "Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    4. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    5. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    6. Jose Cobian & Budy P. Resosudarmo & Alin Halimatussadiah & Susan Olivia, 2022. "Demand for index-based flood insurance in Jakarta, Indonesia," Departmental Working Papers 2022-12, The Australian National University, Arndt-Corden Department of Economics.
    7. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    8. Mohamed Elhag & Shemsu G. Abdurahman, 2020. "Advanced remote sensing techniques in flash flood delineation in Tabuk City, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3401-3413, September.
    9. Rotimi Joseph & David Proverbs & Jessica Lamond, 2015. "Assessing the value of intangible benefits of property level flood risk adaptation (PLFRA) measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1275-1297, November.
    10. Alida Alves & Berry Gersonius & Arlex Sanchez & Zoran Vojinovic & Zoran Kapelan, 2018. "Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2505-2522, May.
    11. Winter, Amanda K. & Karvonen, Andrew, 2022. "Climate governance at the fringes: Peri-urban flooding drivers and responses," Land Use Policy, Elsevier, vol. 117(C).
    12. Katy Cornwell & Titik Anas, 2013. "Survey of recent developments," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 49(1), pages 7-33, April.
    13. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    14. Pooja P. Preetha & Niloufar Shirani-bidabadi & Ashraf Z. Al-Hamdan & Michael Anderson, 2021. "A Methodical Assessment of Floodplains in Mixed Land Covers Encompassing Bridges in Alabama State: Implications of Spatial Land Cover Characteristics on Flood Vulnerability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1603-1618, March.
    15. Jaka Budiman & Jarbou Bahrawi & Asep Hidayatulloh & Mansour Almazroui & Mohamed Elhag, 2021. "Volumetric Quantification of Flash Flood Using Microwave Data on a Watershed Scale in Arid Environments, Saudi Arabia," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
    16. Lei Yao & Liding Chen & Wei Wei, 2017. "Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China," IJERPH, MDPI, vol. 14(3), pages 1-16, February.
    17. Richard Mind’je & Lanhai Li & Jean Baptiste Nsengiyumva & Christophe Mupenzi & Enan Muhire Nyesheja & Patient Mindje Kayumba & Aboubakar Gasirabo & Egide Hakorimana, 2020. "Landslide susceptibility and influencing factors analysis in Rwanda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7985-8012, December.
    18. Ashu Tiwari & Archana Patro, 2018. "Memory, Risk Aversion, and Nonlife Insurance Consumption: Evidence from Emerging and Developing Markets," Risks, MDPI, vol. 6(4), pages 1-17, December.
    19. Ijeoma D. Ajaero & Nnanyelugo M. Okoro & Chukwuedozie K. Ajaero, 2016. "Perception of and Attitude Toward Mass Media Reportage of the 2012 Flood in Rural Nigeria," SAGE Open, , vol. 6(3), pages 21582440166, September.
    20. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Sahar Mohammad-Azari & Erfan Goharian, 2021. "Development of flood mitigation strategies toward sustainable development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2543-2567, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:1:p:35-:d:209214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.