IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v25y1998i5p753-772.html
   My bibliography  Save this article

Application of an Activity-Based Travel-Demand Model Incorporating a Rule-Based Algorithm

Author

Listed:
  • R M Pendyala

    (Department of Civil and Environmental Engineering, University of South Florida, ENB 118, Tampa, FL 33620, USA)

  • R Kitamura

    (Department of Transportation Engineering, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan)

  • D V G Prasuna Reddy

    (Institute of Transportation Studies, University of California, Davis, CA 95616, USA)

Abstract

In this paper an activity-based travel-demand model called AMOS is described. The model system is capable of simulating changes in individual activity and travel behavior that may be brought about by a change in the transportation system. These simulations may then be used to predict the impacts of various transportation policies on regionwide travel characteristics. A rule-based activity-scheduling algorithm is at the heart of AMOS. The algorithm simulates changes in activity and travel patterns while recognizing the presence of constraints under which travelers make decisions. Operationally, the algorithm reads the baseline activity and travel pattern of an individual and then determines the most probable adjustments that the individual may make in response to a transportation policy. In this paper, the scheduling algorithm is described in detail and sample results from a case study in the Washington, DC metropolitan area are provided.

Suggested Citation

  • R M Pendyala & R Kitamura & D V G Prasuna Reddy, 1998. "Application of an Activity-Based Travel-Demand Model Incorporating a Rule-Based Algorithm," Environment and Planning B, , vol. 25(5), pages 753-772, October.
  • Handle: RePEc:sae:envirb:v:25:y:1998:i:5:p:753-772
    DOI: 10.1068/b250753
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b250753
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b250753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kitamura, Ryuichi, 1984. "Incorporating trip chaining into analysis of destination choice," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 67-81, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1991. "Computational-Process Modelling of Travel Decisions: Review and Conceptual Analysis," University of California Transportation Center, Working Papers qt6mk0h2s2, University of California Transportation Center.
    2. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    3. Bhat, Chandra R., 1997. "Work travel mode choice and number of non-work commute stops," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 41-54, February.
    4. Dellaert, B.G.C. & Arentze, T. & Bierlaire, M. & Borgers, A. & Timmermans, H.J.P., 1997. "Investigating consumers' tendency to combine multiple shopping purposes and destinations," Other publications TiSEM bcd54ace-55dc-41c8-9050-0, Tilburg University, School of Economics and Management.
    5. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Utilising activity space concepts to sampling of alternatives for mode and destination choice modelling of discretionary activities," Journal of choice modelling, Elsevier, vol. 42(C).
    6. Amandine Chevalier & Frédéric Lantz, 2013. "Personal car, public transport and other alternatives? Predicting potential modal shifts from multinomial logit models and bootstrap confidence intervals," Working Papers hal-02474779, HAL.
    7. Joh, Chang-Hyeon & Arentze, Theo & Hofman, Frank & Timmermans, Harry, 2002. "Activity pattern similarity: a multidimensional sequence alignment method," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 385-403, June.
    8. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.
    9. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
    10. John Gunnar Carlsson & Mehdi Behroozi & Raghuveer Devulapalli & Xiangfei Meng, 2016. "Household-Level Economies of Scale in Transportation," Operations Research, INFORMS, vol. 64(6), pages 1372-1387, December.
    11. Huang, Arthur & Levinson, David, 2017. "A model of two-destination choice in trip chains with GPS data," Journal of choice modelling, Elsevier, vol. 24(C), pages 51-62.
    12. Brooks, Charles M. & Kaufmann, Patrick J. & Lichtenstein, Donald R., 2008. "Trip chaining behavior in multi-destination shopping trips: A field experiment and laboratory replication," Journal of Retailing, Elsevier, vol. 84(1), pages 29-38.
    13. Ming Lee & Michael McNally, 2006. "An empirical investigation on the dynamic processes of activity scheduling and trip chaining," Transportation, Springer, vol. 33(6), pages 553-565, November.
    14. Xie, Chi & Wang, Tong-Gen & Pu, Xiaoting & Karoonsoontawong, Ampol, 2017. "Path-constrained traffic assignment: Modeling and computing network impacts of stochastic range anxiety," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 136-157.
    15. Yuki Oyama, 2022. "Capturing positive network attributes during the estimation of recursive logit models: A prism-based approach," Papers 2204.01215, arXiv.org, revised Jan 2023.
    16. Golledge, Reginald G. & Kwan, Mei-Po & Garling, Tommy, 1991. "Computational-Process Modelling of Travel Decisions: Empirical Tests," University of California Transportation Center, Working Papers qt97j2x1bk, University of California Transportation Center.
    17. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Zhixiang Fang & Qingquan Li, 2015. "Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach," Transportation, Springer, vol. 42(4), pages 625-646, July.
    18. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    19. Lee, Ming S. & McNally, Michael G., 2003. "On the structure of weekly activity/travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(10), pages 823-839, December.
    20. Karthika, P.S. & Kedar, Vedankur & Verma, Ashish, 2022. "A walk accessibility-based approach to assess crowd management in mass religious gatherings," Journal of Transport Geography, Elsevier, vol. 104(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:25:y:1998:i:5:p:753-772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.