IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v45y2013i8p1995-2011.html
   My bibliography  Save this article

Transportation Ecoefficiency: Quantitative Measurement of Urban Transportation Systems with Readily Available Data

Author

Listed:
  • Anna C McCreery

    (Department of Sociology, 238 Townshend Hall, The Ohio State University, 1885 Neil Avenue Mall, Columbus, OH 43210-1222, USA)

Abstract

In this study, the concept of transportation ecoefficiency (TE) is described, and it is argued that this concept offers coherence to theoretical discussions of the environmental impact of transportation. A TE measure using readily available data is proposed, with four components: (1) percentage of commuters driving to work; (2) percentage of commuters taking public transit; (3) percentage of commuters walking or riding a bicycle; and (4) population density. A confirmatory factor analysis suggests that these components are useful for measuring TE and consistent in their relationships over time. This TE index is used to analyze TE in metropolitan areas in the United States (1980–2008) and in the United Kingdom (1981–2001): TE is decreasing in both countries despite very different starting points, with worrisome implications for climate change and other transportation-related environmental impacts. The paper concludes with a discussion of some uses for the TE metric in empirical research and planning practice, and how the concept could enhance the literature on transportation and the environment.

Suggested Citation

  • Anna C McCreery, 2013. "Transportation Ecoefficiency: Quantitative Measurement of Urban Transportation Systems with Readily Available Data," Environment and Planning A, , vol. 45(8), pages 1995-2011, August.
  • Handle: RePEc:sae:envira:v:45:y:2013:i:8:p:1995-2011
    DOI: 10.1068/a45418
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/a45418
    Download Restriction: no

    File URL: https://libkey.io/10.1068/a45418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael P Johnson, 2001. "Environmental Impacts of Urban Sprawl: A Survey of the Literature and Proposed Research Agenda," Environment and Planning A, , vol. 33(4), pages 717-735, April.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Zachariadis, Theodoros, 2006. "On the baseline evolution of automobile fuel economy in Europe," Energy Policy, Elsevier, vol. 34(14), pages 1773-1785, September.
    4. Sanne, Christer, 2000. "Dealing with environmental savings in a dynamical economy-how to stop chasing your tail in the pursuit of sustainability," Energy Policy, Elsevier, vol. 28(6-7), pages 487-495, June.
    5. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    6. Burnett, Royce D. & Hansen, Don R., 2008. "Ecoefficiency: Defining a role for environmental cost management," Accounting, Organizations and Society, Elsevier, vol. 33(6), pages 551-581, August.
    7. Kaufman, Andrew S. & Meier, Paul J. & Sinistore, Julie C. & Reinemann, Douglas J., 2010. "Applying life-cycle assessment to low carbon fuel standards--How allocation choices influence carbon intensity for renewable transportation fuels," Energy Policy, Elsevier, vol. 38(9), pages 5229-5241, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    2. Bereitschaft, Bradley, 2020. "Gentrification and the evolution of commuting behavior within America's urban cores, 2000–2015," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    4. Davide Burgalassi & Tommaso Luzzati, 2015. "Urban spatial structure and environmental emissions: a survey of the literature and some empirical evidence for Italian NUTS-3 regions," Discussion Papers 2015/199, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    5. Zhongming Lu & Frank Southworth & John Crittenden & Ellen Dunhum-Jones, 2015. "Market potential for smart growth neighbourhoods in the USA: A latent class analysis on heterogeneous preference and choice," Urban Studies, Urban Studies Journal Limited, vol. 52(16), pages 3001-3017, December.
    6. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    7. Vermeiren, Karolien & Crols, Tomas & Uljee, Inge & De Nocker, Leo & Beckx, Carolien & Pisman, Ann & Broekx, Steven & Poelmans, Lien, 2022. "Modelling urban sprawl and assessing its costs in the planning process: A case study in Flanders, Belgium," Land Use Policy, Elsevier, vol. 113(C).
    8. Daly, Hannah E. & Ó Gallachóir, Brian P., 2011. "Modelling future private car energy demand in Ireland," Energy Policy, Elsevier, vol. 39(12), pages 7815-7824.
    9. Hans Verboven & Lise Vanherck, 2016. "The sustainability paradox of the sharing economy," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 24(4), pages 303-314, December.
    10. François Des Rosiers & Marius Thériault & Gjin Biba & Marie-Hélène Vandersmissen, 2017. "Greenhouse gas emissions and urban form: Linking households’ socio-economic status with housing and transportation choices," Environment and Planning B, , vol. 44(5), pages 964-985, September.
    11. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    12. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    13. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    14. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    15. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    16. Bardsley, Nicholas & Büchs, Milena & James, Patrick & Papafragkou, Anastasios & Rushby, Thomas & Saunders, Clare & Smith, Graham & Wallbridge, Rebecca & Woodman, Nicholas, 2019. "Domestic thermal upgrades, community action and energy saving: A three-year experimental study of prosperous households," Energy Policy, Elsevier, vol. 127(C), pages 475-485.
    17. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    18. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    19. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    20. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:45:y:2013:i:8:p:1995-2011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.