IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i2p304-358.html
   My bibliography  Save this article

Floating solar photovoltaic plants in India – A rapid transition to a green energy market and sustainable future

Author

Listed:
  • J. Charles Rajesh Kumar
  • MA Majid

Abstract

The 18,000 square kilometers of water reservoirs in India can generate 280 GW of solar power through floating solar photovoltaic plants. The cumulative installed capacity of FSPV is 0.0027 GW, and the country plans to add 10 GW of FSPV to the 227 GW renewable energy target of 2022. The FSPV addition is small related to the entire market for solar energy, but each contribution is appreciated in the renewable energy market. FSPV could be a viable alternative for speeding up solar power deployment in the country and meeting its NDC targets. So far, the country has achieved the world's lowest investment cost for a floating solar installation. Despite the lower costs, generalizations are still premature because FSPV is still in its initial stages of market entry. Continuous innovation and timely adoption of innovative ideas and technology will support India in meeting its solar energy goals and progressing toward a more sustainable future. Governments must establish clear and enforceable policies to assist developers in reducing risks and increasing investor confidence in the sector. Economic and financial feasibility are examined, and various difficulties in technology, design, finances, environment, maintenance, and occupational health that impact the FSPV deployment are discussed. Based on the research, effective and comprehensive FSPV policy suggestions are included to support establishing an appropriate market, fostering competition and innovation, and attracting large-scale investment. This paper aims to stimulate interest among various policy developers, energy suppliers, industrial designers, ergonomists, project developers, manufacturers, health and safety professionals, executing agencies, training entities, and investment institutions of the FSPV plant to implement effective governance planning and help them to participate in their ways to assure sustainable growth.

Suggested Citation

  • J. Charles Rajesh Kumar & MA Majid, 2023. "Floating solar photovoltaic plants in India – A rapid transition to a green energy market and sustainable future," Energy & Environment, , vol. 34(2), pages 304-358, March.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:2:p:304-358
    DOI: 10.1177/0958305X211057185
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X211057185
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X211057185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chokmaviroj, Somchai & Wattanapong, Rakwichian & Suchart, Yammen, 2006. "Performance of a 500kWP grid connected photovoltaic system at Mae Hong Son Province, Thailand," Renewable Energy, Elsevier, vol. 31(1), pages 19-28.
    2. Pouran, Hamid M., 2018. "From collapsed coal mines to floating solar farms, why China's new power stations matter," Energy Policy, Elsevier, vol. 123(C), pages 414-420.
    3. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
    4. Fernández-Solas, Álvaro & Micheli, Leonardo & Almonacid, Florencia & Fernández, Eduardo F., 2021. "Optical degradation impact on the spectral performance of photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    6. Dai, Jian & Zhang, Chi & Lim, Han Vincent & Ang, Kok Keng & Qian, Xudong & Wong, Johnny Liang Heng & Tan, Sze Tiong & Wang, Chien Looi, 2020. "Design and construction of floating modular photovoltaic system for water reservoirs," Energy, Elsevier, vol. 191(C).
    7. Gerard T. Olson & Michael S. Pagano, 2017. "The Empirical Average Cost of Capital: A New Approach to Estimating the Cost of Corporate Funds," Journal of Applied Corporate Finance, Morgan Stanley, vol. 29(3), pages 101-110, September.
    8. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    9. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2013. "Status of solar wind renewable energy in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 1-10.
    10. Bustos, F. & Toledo, A. & Contreras, J. & Fuentes, A., 2016. "Sensitivity analysis of a photovoltaic solar plant in Chile," Renewable Energy, Elsevier, vol. 87(P1), pages 145-153.
    11. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    12. Jacoby, Gady & Fowler, David J. & Gottesman, Aron A., 2000. "The capital asset pricing model and the liquidity effect: A theoretical approach," Journal of Financial Markets, Elsevier, vol. 3(1), pages 69-81, February.
    13. Kirchherr, Julian & Matthews, Nathanial, 2018. "Technology transfer in the hydropower industry: An analysis of Chinese dam developers’ undertakings in Europe and Latin America," Energy Policy, Elsevier, vol. 113(C), pages 546-558.
    14. Charles Rajesh Kumar J & Vinod Kumar D & MA Majid, 2019. "Wind energy programme in India: Emerging energy alternatives for sustainable growth," Energy & Environment, , vol. 30(7), pages 1135-1189, November.
    15. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    16. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    17. Gonzalez Sanchez, Rocio & Kougias, Ioannis & Moner-Girona, Magda & Fahl, Fernando & Jäger-Waldau, Arnulf, 2021. "Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa," Renewable Energy, Elsevier, vol. 169(C), pages 687-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph M. Kiesecker & Shivaprakash K. Nagaraju & James R. Oakleaf & Anthony Ortiz & Juan Lavista Ferres & Caleb Robinson & Srinivas Krishnaswamy & Raman Mehta & Rahul Dodhia & Jeffrey S. Evans & Micha, 2023. "The Road to India’s Renewable Energy Transition Must Pass through Crowded Lands," Land, MDPI, vol. 12(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inmaculada Guaita-Pradas & Ana Blasco-Ruiz, 2020. "Analyzing Profitability and Discount Rates for Solar PV Plants. A Spanish Case," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    2. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    3. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    5. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    6. Thopil, George Alex & Sachse, Christiaan Eddie & Lalk, Jörg & Thopil, Miriam Sara, 2020. "Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case," Applied Energy, Elsevier, vol. 275(C).
    7. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    8. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    9. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    10. Jha, Aprajeeta & Tripathy, P.P., 2019. "Heat transfer modeling and performance evaluation of photovoltaic system in different seasonal and climatic conditions," Renewable Energy, Elsevier, vol. 135(C), pages 856-865.
    11. Santhakumari, Manju & Sagar, Netramani, 2019. "A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 83-100.
    12. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    13. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Sahoo, Sarat Kumar, 2016. "Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 927-939.
    15. Evaldo C. Gouvêa & Pedro M. Sobrinho & Teófilo M. Souza, 2017. "Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions," Energies, MDPI, vol. 10(8), pages 1-13, August.
    16. Tapia Carpio, Lucio Guido, 2021. "Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil," Utilities Policy, Elsevier, vol. 71(C).
    17. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Solar energy deployment for sustainable future of India: Hybrid SWOC-AHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1138-1151.
    18. Moslehi, Salim & Reddy, T. Agami & Katipamula, Srinivas, 2018. "Evaluation of data-driven models for predicting solar photovoltaics power output," Energy, Elsevier, vol. 142(C), pages 1057-1065.
    19. Pouran, Hamid & Padilha Campos Lopes, Mariana & Ziar, Hesan & Alves Castelo Branco, David & Sheng, Yong, 2022. "Evaluating floating photovoltaics (FPVs) potential in providing clean energy and supporting agricultural growth in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:2:p:304-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.