IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v32y2021i6p1002-1028.html
   My bibliography  Save this article

Current status of global warming potential reduction by cleaner composting

Author

Listed:
  • Tao Liu
  • Sanjeev K Awasthi
  • Yumin Duan
  • Ashok Pandey
  • Zengqiang Zhang
  • Mukesh K Awasthi

Abstract

The global living standards are currently undergoing a stage of growth; however, such improvement also brings some challenges. Global warming is the greatest threat to all living things and attracts more and more attention on a global scale due to the rapid development of economy. Carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) are the common components of greenhouse gases, which contribute to the global warming. Mitigation technologies for these gas emissions are urgently needed in every industry for the aim of cleaner production. Traditional agriculture also contributes significantly to enhance the greenhouse gases emission. Composting is a novel and economic greenhouse gases mitigation strategy compared to other technologies in terms of the organic waste disposal. Some of the European countries showed an increase of more than 50% in the composting rate. The microbial respiration, nitrification and denitrification processes, and the generation of anaerobic condition makes the emission of greenhouse gases inevitable during composting. However, although there have been a lot of papers that focused on the reduction of greenhouse gases emission in composting, none of these has summarized the methods of reducing the emission of greenhouse gases during the composting. This review discusses the benefit of composting in greenhouse gases mitigation in the organic waste management and the current methods to improve mitigation efficiency during cleaner composting. Key physical, chemical, and biological parameters related to greenhouse gases mitigation strategies were precisely studied to give a deep understanding about the emission of greenhouse gases during cleaner composting. Furthermore, the mechanism of greenhouse gases emission mitigation strategies for cleaner composting based on various external measures would be helpful for the exploration of novel and effective mitigation strategies.

Suggested Citation

  • Tao Liu & Sanjeev K Awasthi & Yumin Duan & Ashok Pandey & Zengqiang Zhang & Mukesh K Awasthi, 2021. "Current status of global warming potential reduction by cleaner composting," Energy & Environment, , vol. 32(6), pages 1002-1028, September.
  • Handle: RePEc:sae:engenv:v:32:y:2021:i:6:p:1002-1028
    DOI: 10.1177/0958305X19882417
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X19882417
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X19882417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    2. Awasthi, Mukesh Kumar & Wang, Quan & Chen, Hongyu & Wang, Meijing & Awasthi, Sanjeev Kumar & Ren, Xiuna & Cai, Hanzhen & Li, Ronghua & Zhang, Zengqiang, 2018. "In-vessel co-composting of biosolid: Focusing on mitigation of greenhouse gases emissions and nutrients conservation," Renewable Energy, Elsevier, vol. 129(PB), pages 814-823.
    3. Mohammad, Noor & Alam, Md. Zahangir & Kabbashi, Nassereldeen A. & Ahsan, Amimul, 2012. "Effective composting of oil palm industrial waste by filamentous fungi: A review," Resources, Conservation & Recycling, Elsevier, vol. 58(C), pages 69-78.
    4. Wang, Hanxi & Xu, Jianling & Yu, Haixia & Liu, Xuejun & Yin, Wei & Liu, Yuanyuan & Liu, Zhongwei & Zhang, Tian, 2015. "Study of the application and methods for the comprehensive treatment of municipal solid waste in northeastern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1881-1889.
    5. S K Narendranathan & K Sudhagar & R Karthikeyan, 2019. "Optimization of engine operating parameters suitable for punnai oil application in CI engine using Grey relational method," Energy & Environment, , vol. 30(4), pages 732-751, June.
    6. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awasthi, Mukesh Kumar & Duan, Yumin & Awasthi, Sanjeev Kumar & Liu, Tao & Zhang, Zengqiang & Kim, Sang-Hyoun & Pandey, Ashok, 2020. "Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing," Renewable Energy, Elsevier, vol. 152(C), pages 421-429.
    2. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    3. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    5. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    6. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    7. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    8. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    9. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Maurizio Bressan & Elena Campagnoli & Carlo Giovanni Ferro & Valter Giaretto, 2023. "A Mass Balance-Based Method for the Anaerobic Digestion of Rice Straw," Energies, MDPI, vol. 16(11), pages 1-19, May.
    11. Damaceno, Felippe Martins & Chiarelotto, Maico & Pires Salcedo Restrepo, Juan C. & Buligon, Eduardo Luiz & Costa, Luiz Antonio de Mendonça & de Lucas Junior, Jorge & Costa, Mônica Sarolli Silva de Men, 2019. "Anaerobic co-digestion of sludge cake from poultry slaughtering wastewater treatment and sweet potato: Energy and nutrient recovery," Renewable Energy, Elsevier, vol. 133(C), pages 489-499.
    12. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    13. Chenyujing Yang & Yuanyuan Zhang & Yanjin Xue & Yongji Xue, 2022. "Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    14. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Sharma, Rozi & Malaviya, Piyush, 2023. "Ecosystem services and climate action from a circular bioeconomy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Khoshnevisan, Benyamin & He, Li & Xu, Mingyi & Valverde-Pérez, Borja & Sillman, Jani & Mitraka, Georgia-Christina & Kougias, Panagiotis G. & Zhang, Yifeng & Yan, Shuiping & Ji, Long & Carbajales-Dale,, 2022. "From renewable energy to sustainable protein sources: Advancement, challenges, and future roadmaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Adhirashree Vannarath & Arun Kumar Thalla, 2020. "Evaluation, ranking, and selection of pretreatment methods for the conversion of biomass to biogas using multi-criteria decision-making approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 510-525, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:32:y:2021:i:6:p:1002-1028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.