IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v45y2024i3p87-124.html

Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution

Author

Listed:
  • Simon Hirsch
  • Florian Ziel

Abstract

During the last years, European intraday power markets have gained importance for balancing forecast errors due to the rising volumes of intermittent renewable generation. However, compared to day-ahead markets, the drivers for the intraday price process are still sparsely researched. In this paper, we propose a modelling strategy for the location, shape and scale parameters of the return distribution in intraday markets, based on fundamental variables. We consider wind and solar forecasts and their intraday updates, outages, price information and a novel measure for the shape of the merit-order, derived from spot auction curves as explanatory variables. We validate our modelling by simulating price paths and compare the probabilistic forecasting performance of our model to benchmark models in a forecasting study for the German market. The approach yields significant improvements in the forecasting performance, especially in the tails of the distribution. At the same time, we are able to derive the contribution of the driving variables. We find that, apart from the first lag of the price changes, none of our fundamental variables have explanatory power for the expected value of the intraday returns. This implies weak-form market efficiency as renewable forecast changes and outage information seems to be priced in by the market. We find that the volatility is driven by the merit-order regime, the time to delivery and the closure of cross-border order books. The tail of the distribution is mainly influenced by past price differences and trading activity. Our approach is directly transferable to other continuous intraday markets in Europe.

Suggested Citation

  • Simon Hirsch & Florian Ziel, 2024. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," The Energy Journal, , vol. 45(3), pages 87-124, May.
  • Handle: RePEc:sae:enejou:v:45:y:2024:i:3:p:87-124
    DOI: 10.5547/01956574.45.3.shir
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.45.3.shir
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.45.3.shir?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. Clara Balardy, 2022. "An Empirical Analysis of the Bid-ask Spread in the Continuous Intraday Trading of the German Power Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runyao Yu & Ruochen Wu & Yongsheng Han & Jochen L. Cremer, 2025. "Orderbook Feature Learning and Asymmetric Generalization in Intraday Electricity Markets," Papers 2510.12685, arXiv.org.
    2. Timoth'ee Hornek & Sergio Potenciano Menci & Ivan Pavi'c, 2025. "Directional Price Forecasting in the Continuous Intraday Market under Consideration of Neighboring Products and Limit Order Books," Papers 2509.04452, arXiv.org.
    3. Ciaran O'Connor & Mohamed Bahloul & Steven Prestwich & Andrea Visentin, 2025. "The Evolution of Probabilistic Price Forecasting Techniques: A Review of the Day-Ahead, Intra-Day, and Balancing Markets," Papers 2511.05523, arXiv.org.
    4. Nickelsen, Daniel & Müller, Gernot, 2025. "Bayesian hierarchical probabilistic forecasting of intraday electricity prices," Applied Energy, Elsevier, vol. 380(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Hirsch & Florian Ziel, 2022. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," Papers 2211.13002, arXiv.org.
    2. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    3. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    4. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    5. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    6. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    7. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    9. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    10. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    11. Ellwanger, Reinhard & Snudden, Stephen, 2025. "Putting VAR forecasts of the real price of crude oil to the test," Finance Research Letters, Elsevier, vol. 77(C).
    12. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    13. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    14. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    15. Eliana Gonz�lez & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
    16. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    17. Almeida, Thiago Ramos, 2024. "Estimating time-varying factors’ variance in the string-term structure model with stochastic volatility," Research in International Business and Finance, Elsevier, vol. 70(PA).
    18. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    19. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    20. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:45:y:2024:i:3:p:87-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.