Orderbook Feature Learning and Asymmetric Generalization in Intraday Electricity Markets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Simon Hirsch & Florian Ziel, 2024. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," The Energy Journal, , vol. 45(3), pages 87-124, May.
- Cramer, Eike & Witthaut, Dirk & Mitsos, Alexander & Dahmen, Manuel, 2023. "Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 346(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nickelsen, Daniel & Müller, Gernot, 2025. "Bayesian hierarchical probabilistic forecasting of intraday electricity prices," Applied Energy, Elsevier, vol. 380(C).
- Timoth'ee Hornek & Sergio Potenciano Menci & Ivan Pavi'c, 2025. "Directional Price Forecasting in the Continuous Intraday Market under Consideration of Neighboring Products and Limit Order Books," Papers 2509.04452, arXiv.org.
- Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
- Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
- Runyao Yu & Yuchen Tao & Fabian Leimgruber & Tara Esterl & Jochen Stiasny & Qingsong Wen & Hongye Guo & Jochen L. Cremer, 2025. "OrderFusion: Encoding Orderbook for End-to-End Probabilistic Intraday Electricity Price Forecasting," Papers 2502.06830, arXiv.org, revised Sep 2025.
- de Azevedo Takara, Lucas & Teixeira, Ana Clara & Yazdanpanah, Hamed & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2024. "Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning," Applied Energy, Elsevier, vol. 369(C).
- Kohút, Roman & Klaučo, Martin & Kvasnica, Michal, 2025. "Unified carbon emissions and market prices forecasts of the power grid," Applied Energy, Elsevier, vol. 377(PC).
- Jiang, He & Dong, Yawei & Dong, Yao & Wang, Jianzhou, 2025. "Probabilistic electricity price forecasting by integrating interpretable model," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
- Meisenbacher, Stefan & Phipps, Kaleb & Taubert, Oskar & Weiel, Marie & Götz, Markus & Mikut, Ralf & Hagenmeyer, Veit, 2025. "AutoPQ: Automating quantile estimation from point forecasts in the context of sustainability," Applied Energy, Elsevier, vol. 392(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2025-10-27 (Energy Economics)
- NEP-FOR-2025-10-27 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2510.12685. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2510.12685.html