IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v43y2022i4p251-272.html
   My bibliography  Save this article

Extending Macroeconomic Impacts Forecasting for NEMS

Author

Listed:
  • Christa D. Court
  • Randall W. Jackson
  • Amanda J. Harker Steele
  • Gavin Pickenpaugh
  • Peter Jarosi
  • Justin Adder
  • Charles Zelek

Abstract

To comprehensively model the macroeconomic impacts that result from changes in long-term energy-economy forecasts, the United States (U.S.) Department of Energy’s National Energy Technology Laboratory (NETL) partnered with West Virginia University (WVU)’s Regional Research Institute to develop the NETL/WVU econometric input-output (ECIO) model. The NETL/WVU ECIO model is an impacts forecasting model that functions as an extension of the U.S. energy-economic models available from the U.S. Energy Information Administration’s National Energy Modeling System (NEMS) and the U.S. Environmental Protection Agency’s Market Allocation (MARKAL) model. The ECIO model integrates a macroeconomic econometric forecasting model and an input-output accounting framework along derived forecast scenarios detailing a baseline of the U.S. ener-gy-economy and an alternative forecast on how power generation resources can meet future levels of energy demand to generate estimates of the impacts to gross domestic product, employment, and labor income. This manuscript provides an overview of the model design, assumptions, and standard outputs.

Suggested Citation

  • Christa D. Court & Randall W. Jackson & Amanda J. Harker Steele & Gavin Pickenpaugh & Peter Jarosi & Justin Adder & Charles Zelek, 2022. "Extending Macroeconomic Impacts Forecasting for NEMS," The Energy Journal, , vol. 43(4), pages 251-272, May.
  • Handle: RePEc:sae:enejou:v:43:y:2022:i:4:p:251-272
    DOI: 10.5547/01956574.43.4.ccou
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.43.4.ccou
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.43.4.ccou?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    2. Kenneth Gillingham & Pei Huang, 2019. "Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?," The Energy Journal, , vol. 40(2), pages 1-26, March.
    3. Victor, Nadejda & Nichols, Christopher & Zelek, Charles, 2018. "The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model," Energy Economics, Elsevier, vol. 73(C), pages 410-425.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Kenneth T. Gillingham & Marten Ovaere & Stephanie M. Weber, 2025. "Carbon Policy and the Emissions Implications of Electric Vehicles," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 12(2), pages 313-352.
    4. Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
    5. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    6. Prest, Brian C., 2020. "Supply-Side Reforms to Oil and Gas Production on Federal Lands: Modeling the Implications for Climate Emissions, Revenues, and Production Shifts," RFF Working Paper Series 20-16, Resources for the Future.
    7. Yavari, Mohammad & Bohreghi, Iman Mohammadi, 2025. "Developing a green-resilient power network and supply chain: Integrating renewable and traditional energy sources in the face of disruptions," Applied Energy, Elsevier, vol. 377(PC).
    8. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    9. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    11. Zhou, W. & Moncaster, A. & Reiner, D. & Guthrie, P., 2020. "Developing a generic System Dynamics model for building stock transformation towards energy efficiency and low-carbon development," Cambridge Working Papers in Economics 2057, Faculty of Economics, University of Cambridge.
    12. Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.
    14. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    15. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    16. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    17. Dong, Cong & Huang, Gordon & Cheng, Guanhui & Cai, Yanpeng & Chen, Cong & Zhu, Jinxin, 2025. "Assessing energy economic and environmental impacts of GHG emission reduction targets across Canadian provinces: A national net-zeroization-oriented energy model," Applied Energy, Elsevier, vol. 381(C).
    18. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    20. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:43:y:2022:i:4:p:251-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.