Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method
Author
Abstract
Suggested Citation
DOI: 10.5547/ISSN0195-6574-EJ-Vol18-No3-3
Download full text from publisher
References listed on IDEAS
- Choi, Ki-Hong & Ang, B.W. & Ro, K.K., 1995. "Decomposition of the energy-intensity index with application for the Korean manufacturing industry," Energy, Elsevier, vol. 20(9), pages 835-842.
- Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Laporte, Juan P. & Román-Collado, Rocío & Cansino, José M., 2024. "Key driving forces of energy consumption in a higher education institution using the LMDI approach: The case of the Universidad Autónoma de Chile," Applied Energy, Elsevier, vol. 372(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
- Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
- Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
- Mukherjee, Kankana, 2008. "Energy use efficiency in U.S. manufacturing: A nonparametric analysis," Energy Economics, Elsevier, vol. 30(1), pages 76-96, January.
- Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
- Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
- P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
- Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
- Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
- Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
- Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
- Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
- Paitoon Wiboonchutikula & Bundit Chaivichayachat & Jaruwan Chontanawat, 2014. "Sources Of Energy Intensity Change Of Thailand'S Steel Industry In The Decade Of Global Turbulent Time," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 59(03), pages 1-34.
- Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
- Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
- Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
- Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
- Sudhakara Reddy, B. & Kumar Ray, Binay, 2011.
"Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector,"
Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
- Binay Kumar Ray & B. Sudhakara Reddy, 2008. "Understanding industrial energy use - Physical energy intensity changes in Indian manufacturing sector," Energy Working Papers 22328, East Asian Bureau of Economic Research.
- B. Sudhakara Reddy & Binay Kumar Ray, 2010. "Understanding Industrial Energy Use: Physical Energy Intensity Changes in Indian Manufacturing Sector," Working Papers id:2397, eSocialSciences.
- Binay Kumar Ray & B. Sudhakara Reddy, 2008. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2008-011, Indira Gandhi Institute of Development Research, Mumbai, India.
- Jimenez, Raul & Mercado, Jorge, 2014.
"Energy intensity: A decomposition and counterfactual exercise for Latin American countries,"
Energy Economics, Elsevier, vol. 42(C), pages 161-171.
- Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
- Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
More about this item
Keywords
Decomposition analysis; Divisia index method; Korea; energy intensity; industrial energy demand;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:18:y:1997:i:3:p:59-73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.