IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v17y1996i4p89-105.html
   My bibliography  Save this article

Identifying Distributed Generation and Demand Side Management Investment Opportunities

Author

Listed:
  • Thomas E. Hoff

Abstract

Distributed generation and targeted demand side management programs offer electric utilities alternatives to large transmission and distribution (T&P) system capacity investments. This paper presents a method to estimate how much a utility can afford to pay for these alternatives when the change in system capacity due to the distributed resource is constant from year to year and when there is no uncertainty. The method is concise, has intuitive appeal, has minimal data requirements, and is accurate when benchmarked against two existing case studies. Analysts who want to screen distributed resource investment opportunities with a minimal amount of effort will find the method particularly useful.

Suggested Citation

  • Thomas E. Hoff, 1996. "Identifying Distributed Generation and Demand Side Management Investment Opportunities," The Energy Journal, , vol. 17(4), pages 89-105, October.
  • Handle: RePEc:sae:enejou:v:17:y:1996:i:4:p:89-105
    DOI: 10.5547/ISSN0195-6574-EJ-Vol17-No4-4
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-Vol17-No4-4
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-Vol17-No4-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoff, Thomas E & Wenger, Howard J & Farmer, Brian K, 1996. "Distributed generation : An alternative to electric utility investments in system capacity," Energy Policy, Elsevier, vol. 24(2), pages 137-147, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.L. Amin, 2000. "Challenges for Renewable Electricity in Dcs," Energy & Environment, , vol. 11(4), pages 511-530, July.
    2. Detroja, Ketan P., 2016. "Optimal autonomous microgrid operation: A holistic view," Applied Energy, Elsevier, vol. 173(C), pages 320-330.
    3. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    4. Poudineh, Rahmatallah & Jamasb, Tooraj, 2014. "Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement," Energy Policy, Elsevier, vol. 67(C), pages 222-231.
    5. Bertolini, Marina & D’Alpaos, Chiara & Moretto, Michele, 2016. "Investing in Photovoltaics: Timing, Plant Sizing and Smart Grids Flexibility," MITP: Mitigation, Innovation and Transformation Pathways 244540, Fondazione Eni Enrico Mattei (FEEM).
    6. Perez, Richard & Zweibel, Ken & Hoff, Thomas E., 2011. "Solar power generation in the US: Too expensive, or a bargain?," Energy Policy, Elsevier, vol. 39(11), pages 7290-7297.
    7. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    8. Moreira, Nuno Afonso & Monteiro, Eliseu & Ferreira, Sergio, 2007. "Transposition of the EU cogeneration directive: A vision for Portugal," Energy Policy, Elsevier, vol. 35(11), pages 5747-5753, November.
    9. Deepak Sharma & Robert Bartels, 1997. "Distributed Electricity Generation in Competitive Energy Markets: A Case Study in Australia," The Energy Journal, , vol. 18(1_suppl), pages 17-39, June.
    10. Martín-Martínez, F. & Sánchez-Miralles, A. & Rivier, M. & Calvillo, C.F., 2017. "Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study," Energy, Elsevier, vol. 134(C), pages 850-863.
    11. Ramzi Saidi & Jean-Christophe Olivier & Mohamed Machmoum & Eric Chauveau, 2021. "Cascaded Centered Moving Average Filters for Energy Management in Multisource Power Systems with a Large Number of Devices," Energies, MDPI, vol. 14(12), pages 1-21, June.
    12. Monteiro, Eliseu & Moreira, Nuno Afonso & Ferreira, Sérgio, 2009. "Planning of micro-combined heat and power systems in the Portuguese scenario," Applied Energy, Elsevier, vol. 86(3), pages 290-298, March.
    13. Thomas E. Hoff, 1997. "Using Distributed Resources to Manage Risks Caused by Demand Uncertainty," The Energy Journal, , vol. 18(1_suppl), pages 63-83, June.
    14. Rosa, Carmen Brum & Rigo, Paula Donaduzzi & Rediske, Graciele & Moccellin, Ana Paula & Mairesse Siluk, Julio Cezar & Michels, Leandro, 2021. "How to measure organizational performance of distributed generation in electric utilities? The Brazilian case," Renewable Energy, Elsevier, vol. 169(C), pages 191-203.
    15. Farnaz Farzan & Khashayar Mahani & Kaveh Gharieh & Mohsen Jafari, 2015. "Microgrid investment under uncertainty: a real option approach using closed form contingent analysis," Annals of Operations Research, Springer, vol. 235(1), pages 259-276, December.
    16. Vogel, Philip, 2009. "Efficient investment signals for distributed generation," Energy Policy, Elsevier, vol. 37(9), pages 3665-3672, September.
    17. Oliva H., Sebastian & Muñoz, Juan & Fredes, Felipe & Sauma, Enzo, 2022. "Impact of increasing transmission capacity for a massive integration of renewable energy on the energy and environmental value of distributed generation," Renewable Energy, Elsevier, vol. 183(C), pages 524-534.
    18. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    19. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    20. Mills, Andrew & Wiser, Ryan & Barbose, Galen & Golove, William, 2008. "The impact of retail rate structures on the economics of commercial photovoltaic systems in California," Energy Policy, Elsevier, vol. 36(9), pages 3266-3277, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:17:y:1996:i:4:p:89-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.