IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2023i2p21-35.html
   My bibliography  Save this article

Contagion Between Gold and other Commodity Goods using Bayesian Multivariate Quantile_On_Quantile Approach

Author

Listed:
  • Hao Wen CHANG

    (Department of Finance, National Yang-Ming Chiao-Tung University, HsinChu, TAIWAN.)

  • Tsangyao CHANG

    (Department of Finance, Feng Chia University, Taichung, TAIWAN.)

  • Yang-Cheng LU

    (Department of Finance, Ming Chung University, Taipei, TAIWAN.)

Abstract

This study revisits Gold, Nickel, oil price, Copper, and Tin links using Bayesian Multivariate Quantile_on_Quantile approach over the period of 1960M1 to 2022M5. Where the GARCH (1,1) is considered when estimating the model to alleviate the heteroskedastic problem. Our findings show that the connections between Gold returns and other four commodity goods returns change across various quantiles. The GARCH model shows that previous information and persistence gauges vary with current conditional variance under different quantiles. Moreover, the half-life of a shock ranges from 0.38 to 3.72 months for all our markets, which was not found in the existing papers. Our findings provide prominent economic implications for investors, practitioners, and government.

Suggested Citation

  • Hao Wen CHANG & Tsangyao CHANG & Yang-Cheng LU, 2023. "Contagion Between Gold and other Commodity Goods using Bayesian Multivariate Quantile_On_Quantile Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 21-35, June.
  • Handle: RePEc:rjr:romjef:v::y:2023:i:2:p:21-35
    as

    Download full text from publisher

    File URL: https://www.ipe.ro/rjef/rjef2_2023/rjef2_2023p21-35.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jain, Anshul & Biswal, P.C., 2016. "Dynamic linkages among oil price, gold price, exchange rate, and stock market in India," Resources Policy, Elsevier, vol. 49(C), pages 179-185.
    2. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    3. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    4. Balcilar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat, 2019. "Quantile relationship between oil and stock returns: Evidence from emerging and frontier stock markets," Energy Policy, Elsevier, vol. 134(C).
    5. Antonakakis, Nikolaos & Breitenlechner, Max & Scharler, Johann, 2015. "Business cycle and financial cycle spillovers in the G7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 58(C), pages 154-162.
    6. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    2. Wang, Xinya & Liu, Huifang & Huang, Shupei, 2019. "Identification of the daily seasonality in gold returns and volatilities: Evidence from Shanghai and London," Resources Policy, Elsevier, vol. 61(C), pages 522-531.
    3. Muhammad Abubakr Naeem & Fiza Qureshi & Saqib Farid & Aviral Kumar Tiwari & Mohamed Elheddad, 2024. "Time-frequency information transmission among financial markets: evidence from implied volatility," Annals of Operations Research, Springer, vol. 334(1), pages 701-729, March.
    4. Dutta, Anupam & Bouri, Elie & Roubaud, David, 2019. "Nonlinear relationships amongst the implied volatilities of crude oil and precious metals," Resources Policy, Elsevier, vol. 61(C), pages 473-478.
    5. Zhu, Huiming & Huang, Xi & Ye, Fangyu & Li, Shuang, 2024. "Frequency spillover effects and cross-quantile dependence between crude oil and stock markets: Evidence from BRICS and G7 countries," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    6. Zhu, Huiming & Huang, Hui & Peng, Cheng & Yang, Yan, 2016. "Extreme dependence between crude oil and stock markets in Asia-Pacific regions: Evidence from quantile regression," Economics Discussion Papers 2016-46, Kiel Institute for the World Economy (IfW Kiel).
    7. Wang, Xiaoxuan & Gao, Xiangyun & Wu, Tao & Sun, Xiaotian, 2022. "Dynamic multiscale analysis of causality among mining stock prices," Resources Policy, Elsevier, vol. 77(C).
    8. Naeem, Muhammad Abubakr & Pham, Linh & Senthilkumar, Arunachalam & Karim, Sitara, 2022. "Oil shocks and BRIC markets: Evidence from extreme quantile approach," Energy Economics, Elsevier, vol. 108(C).
    9. Liu, Feng & Zhang, Chuanguo & Tang, Mengying, 2021. "The impacts of oil price shocks and jumps on China's nonferrous metal markets," Resources Policy, Elsevier, vol. 73(C).
    10. Naeem, Muhammad Abubakr & Qureshi, Fiza & Arif, Muhammad & Balli, Faruk, 2021. "Asymmetric relationship between gold and Islamic stocks in bearish, normal and bullish market conditions," Resources Policy, Elsevier, vol. 72(C).
    11. Naeem, Muhammad Abubakr & Peng, Zhe & Bouri, Elie & Hussain Shahzad, Syed Jawad & Karim, Sitara, 2022. "Examining the asymmetries between equity and commodity ETFs during COVID-19," Resources Policy, Elsevier, vol. 79(C).
    12. Shao, Liuguo & Zhang, Hua & Chen, Jinyu & Zhu, Xuehong, 2021. "Effect of oil price uncertainty on clean energy metal stocks in China: Evidence from a nonparametric causality-in-quantiles approach," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 407-419.
    13. Zhu, Mingxue & Zhang, Hua & Xing, Wanli & Zhou, Xuanru & Wang, Lu & Sun, Haoyu, 2023. "Research on price transmission in Chinese mining stock market: Based on industry," Resources Policy, Elsevier, vol. 83(C).
    14. Ramzi Benkraiem & Thi hong van Hoang & Amine Lahiani & Anthony Miloudi, 2018. "Crude oil and equity markets in major European countries: New evidence," Economics Bulletin, AccessEcon, vol. 38(4), pages 2094-2110.
    15. Hanif, Waqas & Hadhri, Sinda & El Khoury, Rim, 2024. "Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil producers and consumers," Journal of Commodity Markets, Elsevier, vol. 34(C).
    16. Xie, Qichang & Jiang, Yinghui & Jia, Nanfei & Wang, Hongtao, 2024. "Asymmetric impact of oil structural shocks on non-ferrous metals supply chains: A groundbreaking multidimensional quantile-on-quantile regression," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    17. Chen, Jinyu & Wang, Yilin & Ren, Xiaohang, 2022. "Asymmetric effects of non-ferrous metal price shocks on clean energy stocks: Evidence from a quantile-on-quantile method," Resources Policy, Elsevier, vol. 78(C).
    18. Wen, Danyan & Wang, Yudong & Ma, Chaoqun & Zhang, Yaojie, 2020. "Information transmission between gold and financial assets: Mean, volatility, or risk spillovers?," Resources Policy, Elsevier, vol. 69(C).
    19. Hau, Liya & Zhu, Huiming & Huang, Rui & Ma, Xiang, 2020. "Heterogeneous dependence between crude oil price volatility and China’s agriculture commodity futures: Evidence from quantile-on-quantile regression," Energy, Elsevier, vol. 213(C).
    20. Escobari, Diego & Sharma, Shahil, 2020. "Explaining the nonlinear response of stock markets to oil price shocks," Energy, Elsevier, vol. 213(C).

    More about this item

    Keywords

    Bayesian; Quantile_on_Quantile; Gold; Commodity Goods; GARCH;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2023:i:2:p:21-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman The email address of this maintainer does not seem to be valid anymore. Please ask Corina Saman to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.