IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2017i4p116-133.html
   My bibliography  Save this article

The Use Of The Pivot Pairwise Relative Criteria Importance Assessment Method For Determining The Weights Of Criteria

Author

Listed:
  • Dragisa STANUJKIC

    (Technical Faculty in Bor, University of Belgrade, Serbija.)

  • Edmundas Kazimieras ZAVADSKAS

    (Research Institute of Smart Building Technologies, Vilnius Gediminas Technical University, Vilnius, Lithuania.)

  • Darjan KARABASEVIC

    (Faculty of Applied Management, Economics and Finance, University Business Academy in Novi Sad, Serbia.)

  • Florentin SMARANDACHE

    (Department of Mathematics, University of New Mexico, Gallup, USA.)

  • Zenonas TURSKIS

    (Research Institute of Smart Building Technologies, Vilnius Gediminas Technical University, Vilnius, Lithuania.)

Abstract

The weights of evaluation criteria could have a significant impact on the results obtained by applying multiple criteria decision-making methods. Therefore, the two extensions of the SWARA method that can be used in cases when it is not easy, or even is impossible to reach a consensus on the expected importance of the evaluation criteria are proposed in this paper. The primary objective of the proposed extensions is to provide an understandable and easy-to-use approach to the collecting of respondents’ real attitudes towards the significance of evaluation criteria and to also provide an approach to the checking of the reliability of the data collected.

Suggested Citation

  • Dragisa STANUJKIC & Edmundas Kazimieras ZAVADSKAS & Darjan KARABASEVIC & Florentin SMARANDACHE & Zenonas TURSKIS, 2017. "The Use Of The Pivot Pairwise Relative Criteria Importance Assessment Method For Determining The Weights Of Criteria," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 116-133, December.
  • Handle: RePEc:rjr:romjef:v::y:2017:i:4:p:116-133
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef4_17/rjef4_2017p116-133.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edmundas Kazimieras Zavadskas & Valentinas Podvezko, 2016. "Integrated Determination of Objective Criteria Weights in MCDM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 267-283, March.
    2. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    3. Professor Snezana UROSEVIC & Darjan KARABASEVIC & Dragisa STANUJKIC & Mladjan MAKSIMOVIC, 2017. "An Approach to Personnel Selection in the Tourism Industry Based on the SWARA and the WASPAS Methods," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(1), pages 75-88.
    4. Ma, Jian & Fan, Zhi-Ping & Huang, Li-Hua, 1999. "A subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 112(2), pages 397-404, January.
    5. Morteza Yazdani & Sarfaraz Hashemkhani Zolfani & Edmundas Kazimieras Zavadskas, 2016. "New integration of MCDM methods and QFD in the selection of green suppliers," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 17(6), pages 1097-1113, November.
    6. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    7. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 337-369, September.
    8. Edmundas Kazimieras Zavadskas & Abbas Mardani & Zenonas Turskis & Ahmad Jusoh & Khalil MD Nor, 2016. "Development of TOPSIS Method to Solve Complicated Decision-Making Problems — An Overview on Developments from 2000 to 2015," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 645-682, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pratibha Rani & Dragan Pamucar & Arunodaya Raj Mishra & Ibrahim M. Hezam & Jabir Ali & S. K. Hasane Ahammad, 2024. "An integrated interval-valued Pythagorean fuzzy WISP approach for industry 4.0 technology assessment and digital transformation," Annals of Operations Research, Springer, vol. 342(2), pages 1235-1274, November.
    2. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    3. Namin, Farhad Samimi & Ghadi, Aliakbar & Saki, Farshad, 2022. "A literature review of Multi Criteria Decision-Making (MCDM) towards mining method selection (MMS)," Resources Policy, Elsevier, vol. 77(C).
    4. Andrea Dobrosavljević & Snežana Urošević & Milovan Vuković & Miroslav Talijan & Dragan Marinković, 2020. "Evaluation of Process Orientation Dimensions in the Apparel Industry," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    5. Alptekin Ulutaş & Darjan Karabasevic & Gabrijela Popovic & Dragisa Stanujkic & Phong Thanh Nguyen & Çağatay Karaköy, 2020. "Development of a Novel Integrated CCSD-ITARA-MARCOS Decision-Making Approach for Stackers Selection in a Logistics System," Mathematics, MDPI, vol. 8(10), pages 1-15, October.
    6. Bojan Matić & Stanislav Jovanović & Milan Marinković & Siniša Sremac & Dillip Kumar Das & Željko Stević, 2021. "A Novel Integrated Interval Rough MCDM Model for Ranking and Selection of Asphalt Production Plants," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    7. Dragisa Stanujkic & Darjan Karabasevic & Edmundas Kazimieras Zavadskas & Florentin Smarandache & Fausto Cavallaro, 2019. "An approach to determining customer satisfaction in traditional Serbian restaurants," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(3), pages 1127-1138, March.
    8. Dragisa STANUJKIC & Darjan KARABASEVIC & Gabrijela POPOVIC & Cipriana SAVA, 2021. "Simplified Pivot Pairwise Relative Criteria Importance Assessment (Piprecia-S) Method," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 141-154, December.
    9. Arunodaya Raj Mishra & Pratibha Rani & Dragan Pamucar & Abhijit Saha, 2024. "An integrated Pythagorean fuzzy fairly operator-based MARCOS method for solving the sustainable circular supplier selection problem," Annals of Operations Research, Springer, vol. 342(1), pages 523-564, November.
    10. Li, Yaxin & Ding, Yuxin & Guo, Yuliang & Cui, Haizhou & Gao, Haiyi & Zhou, Ziyu & (Aaron) Zhang, Nanbo & Zhu, Siyao & Chen, Faan, 2023. "An integrated decision model with reliability to support transport safety system analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Aşkın Özdağoğlu & Gülin Zeynep Öztaş & Murat Kemal Keleş & Volkan Genç, 2021. "An Integrated PIPRECIA and COPRAS Method under Fuzzy Environment: A Case of Truck Tractor Selection," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 9(2), pages 269-298, December.
    12. Popovic, Gabrijela & Stanujkic, Dragisa & Brzakovic, Miodrag & Karabasevic, Darjan, 2019. "A multiple-criteria decision-making model for the selection of a hotel location," Land Use Policy, Elsevier, vol. 84(C), pages 49-58.
    13. Vaida Zemlickienė & Indrė Lapinskaitė & Zenonas Turskis, 2022. "Internal Communication in R&D: Decision-Making Methods Based on Expert Approaches," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    14. Jaukovic Jocic, Kristina & Jocic, Goran & Darjan, Darjan & Popovic, Gabrijela & Stanujkic, Dragisa & Kazimieras Zavadskas, Edmundas & Nguyen, Phong Thanh, 2020. "A Novel Integrated PIPRECIA–Interval-Valued Triangular Fuzzy ARAS Model: E-Learning Course Selection," MPRA Paper 112009, University Library of Munich, Germany, revised 01 Jun 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    2. Jingyuan Shi & Jiaqing Sun, 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Francis Marleau Donais & Irène Abi-Zeid & E. Owen D. Waygood & Roxane Lavoie, 2021. "A Framework for Post-Project Evaluation of Multicriteria Decision Aiding Processes from the Stakeholders’ Perspective: Design and Application," Group Decision and Negotiation, Springer, vol. 30(5), pages 1161-1191, October.
    4. Fernández, Eduardo & Navarro, Jorge & Solares, Efrain, 2022. "A hierarchical interval outranking approach with interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(1), pages 293-307.
    5. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.
    6. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    7. Yandong He & Xu Wang & Yun Lin & Fuli Zhou, 2016. "Optimal Partner Combination for Joint Distribution Alliance using Integrated Fuzzy EW-AHP and TOPSIS for Online Shopping," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    8. S. Saffarzadeh & A. Hadi-Vencheh & A. Jamshidi, 2019. "An Interval Based Score Method for Multiple Criteria Decision Making Problems," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1667-1687, September.
    9. Riley, David & Schaafsma, Marije & Marin-Moreno, Héctor & Minshull, Tim A., 2020. "A social, environmental and economic evaluation protocol for potential gas hydrate exploitation projects," Applied Energy, Elsevier, vol. 263(C).
    10. Zida Song & Quan Liu & Zhigen Hu, 2020. "Decision-Making Framework, Enhanced by Mutual Inspection for First-Stage Dam Construction Diversion Scheme Selection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 563-577, January.
    11. Selef García-Orozco & Gregorio Vargas-Gutiérrez & Stephanie Ordóñez-Sánchez & Rodolfo Silva, 2023. "Using Multi-Criteria Decision Making in Quality Function Deployment for Offshore Renewable Energies," Energies, MDPI, vol. 16(18), pages 1-21, September.
    12. Montlaur, Adeline & Delgado, Luis & Prats, Xavier, 2023. "Domain-driven multiple-criteria decision-making for flight crew decision support tool," Journal of Air Transport Management, Elsevier, vol. 112(C).
    13. Paul, Manashi & Negahban-Azar, Masoud & Shirmohammadi, Adel & Montas, Hubert, 2020. "Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis," Agricultural Water Management, Elsevier, vol. 231(C).
    14. BULUT, Merve & ÖZCAN, Evrencan, 2021. "A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
    16. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2016. "A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    17. Audrius Čereška & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ina Tetsman & Irina Grinbergienė, 2016. "Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods," Sustainability, MDPI, vol. 8(7), pages 1-12, June.
    18. Rađenović Žarko & Veselinović Ivana, 2017. "Integrated AHP-TOPSIS Method for the Assessment of Health Management Information Systems Efficiency," Economic Themes, Sciendo, vol. 55(1), pages 121-142, March.
    19. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    20. Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Tatjana Vilutiene & Hojjat Adeli, 2017. "Sustainable Decision-Making in Civil Engineering, Construction and Building Technology," Sustainability, MDPI, vol. 10(1), pages 1-21, December.

    More about this item

    Keywords

    PIvot Pairwise RElative Criteria Importance Assessment; PIPRECIA; PIPRECIAE; SWARA; criteria weights; group decision-making;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2017:i:4:p:116-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.