IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0243.html
   My bibliography  Save this article

Autocorrelation in the global stochastic trend

Author

Listed:
  • Durdyev, Ruslan

    (International Laboratory of Quantitative Finance NRU HSE)

  • Peresetsky, Anatoly

    (Higher School of Economics and CEMI RAS, Moscow)

Abstract

Korhonen and Peresetsky (2013) suggested a new Kalman-filter type model of financial markets to extract a global stochastic trend from discrete non-synchronous data on daily stock market index returns from different markets. We extend this model to allow the correlation between increments of this global trend on neighbor intervals. Existence of that non-zero correlation is demonstrated. However it does not mean that it helps forecast daily returns of the stock indices itself, since the global stochastic trend is unobservable. Forecasting performance of the model with three stock markets is explored.

Suggested Citation

  • Durdyev, Ruslan & Peresetsky, Anatoly, 2014. "Autocorrelation in the global stochastic trend," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 35(3), pages 39-58.
  • Handle: RePEc:ris:apltrx:0243
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2014_3_39-58.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Korhonen, Iikka & Peresetsky, Anatoly, 2013. "What determines stock market behavior in Russia and other emerging countries?," BOFIT Discussion Papers 4/2013, Bank of Finland, Institute for Economies in Transition.
    2. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    3. Felices, Guillermo & Wieladek, Tomasz, 2012. "Are emerging market indicators of vulnerability to financial crises decoupling from global factors?," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 321-331.
    4. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
    5. Lin, Wen-Ling & Engle, Robert F & Ito, Takatoshi, 1994. "Do Bulls and Bears Move across Borders? International Transmission of Stock Returns and Volatility," Review of Financial Studies, Society for Financial Studies, vol. 7(3), pages 507-538.
    6. Chang, Yoosoon & Isaac Miller, J. & Park, Joon Y., 2009. "Extracting a common stochastic trend: Theory with some applications," Journal of Econometrics, Elsevier, vol. 150(2), pages 231-247, June.
    7. Byung Yoon Bae & Dong Heon Kim, 2011. "Global and Regional Yield Curve Dynamics and Interactions: The Case of Some Asian Countries," International Economic Journal, Taylor & Francis Journals, vol. 25(4), pages 717-738, December.
    8. Mardi Dungey & Vance L Martin & Adrian R Pagan, 2000. "A multivariate latent factor decomposition of international bond yield spreads," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 697-715.
    9. Korhonen, Iikka & Peresetsky, Anatoly, 2013. "Extracting global stochastic trend from non-synchronous data," BOFIT Discussion Papers 15/2013, Bank of Finland, Institute for Economies in Transition.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017. "Autocorrelation in an unobservable global trend: does it help to forecast market returns?," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
    2. Григорьев Р.А., 2019. "Одновременные Эффекты Несинхронных Временных Рядов: Проблемы Var-Модели," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 55(2), pages 118-129, апрель.
    3. Grigoryeva, Lyudmila & Ortega, Juan-Pablo & Peresetsky, Anatoly, 2018. "Volatility forecasting using global stochastic financial trends extracted from non-synchronous data," Econometrics and Statistics, Elsevier, vol. 5(C), pages 67-82.
    4. Pogorelova, Polina & Peresetsky, Anatoly, 2020. "Extracting the global stochastic trend from non-synchronous data on the volatility of financial indices," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 57, pages 53-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatoly A. Peresetsky & Ruslan I. Yakubov, 2017. "Autocorrelation in an unobservable global trend: does it help to forecast market returns?," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 7(1/2), pages 152-169.
    2. Grigoryeva, Lyudmila & Ortega, Juan-Pablo & Peresetsky, Anatoly, 2018. "Volatility forecasting using global stochastic financial trends extracted from non-synchronous data," Econometrics and Statistics, Elsevier, vol. 5(C), pages 67-82.
    3. Korhonen, Iikka & Peresetsky, Anatoly, 2013. "Extracting global stochastic trend from non-synchronous data," BOFIT Discussion Papers 15/2013, Bank of Finland, Institute for Economies in Transition.
    4. Dungey, Mardi & Erdemlioglu, Deniz & Matei, Marius & Yang, Xiye, 2018. "Testing for mutually exciting jumps and financial flights in high frequency data," Journal of Econometrics, Elsevier, vol. 202(1), pages 18-44.
    5. Mun, Kyung-Chun, 2005. "Contagion and impulse response of international stock markets around the 9-11 terrorist attacks," Global Finance Journal, Elsevier, vol. 16(1), pages 48-68, August.
    6. Zied Ftiti & Aviral Tiwari & Amél Belanès & Khaled Guesmi, 2015. "Tests of Financial Market Contagion: Evolutionary Cospectral Analysis Versus Wavelet Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(4), pages 575-611, December.
    7. Wen-Ling Lin & Takatoshi Ito, 1994. "Price Volatility and Volume Spillovers between the Tokyo and New York Stock Markets," NBER Chapters, in: The Internationalization of Equity Markets, pages 309-343, National Bureau of Economic Research, Inc.
    8. Gannon, Gerard L. & Thuraisamy, Kannan S., 2017. "Sovereign risk and the impact of crisis: Evidence from Latin AmericaAuthor-Name: Batten, Jonathan A," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 328-350.
    9. Nagayasu, Jun, 2010. "Economic Factors Contributing to Time-Varying Conditional Correlations in Stock Returns," MPRA Paper 28391, University Library of Munich, Germany.
    10. Usman M. Umer, Metin Coskun, Kasim Kiraci, 2018. "Time-varying Return and Volatility Spillover among EAGLEs Stock Markets: A Multivariate GARCH Analysis," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 3(1), pages 23-42, March.
    11. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
    12. Gregory Bauer & Clara Vega, 2004. "The Monetary Origins of Asymmetric Information in International Equity Markets," Staff Working Papers 04-47, Bank of Canada.
    13. Francis, Bill B. & Hasan, Iftekhar & Hunter, Delroy M., 2002. "Return-volatility linkages in the international equity and currency markets," Research Discussion Papers 9/2002, Bank of Finland.
    14. Mulyadi, Martin Surya, 2009. "Volatility spillover in Indonesia, USA, and Japan capital market," MPRA Paper 16914, University Library of Munich, Germany.
    15. G. Mujtaba Mian & Christopher M. Adam, 2000. "Does More Market-Wide Information Originate While an Exchange is Open: Some Anomalous Evidence from the ASX," Australian Journal of Management, Australian School of Business, vol. 25(3), pages 339-352, December.
    16. Wahyoe Soedarmono, 2018. "Stock market integration in the Asia-Pacific region: Evidence from cointegration of liquidity risk," Economics Bulletin, AccessEcon, vol. 38(1), pages 60-70.
    17. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    18. Candelon, Bertrand & Piplack, Jan & Straetmans, Stefan, 2008. "On measuring synchronization of bulls and bears: The case of East Asia," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1022-1035, June.
    19. Giulio Cifarelli & Giovanna Paladino, 2001. "Volatility spillovers and the role of leading financial centres," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 54(216), pages 37-71.
    20. Kregždė Arvydas & Kišonaitė Karolina, 2018. "Co-movements of Lithuanian and Central European Stock Markets Across Different Time Horizons: A Wavelet Approach," Ekonomika (Economics), Sciendo, vol. 97(2), pages 55-69, December.

    More about this item

    Keywords

    financial market integration; stock market returns; global stochastic trend; state space model; Kalman filter; non-synchronous data; market returns forecast.;
    All these keywords.

    JEL classification:

    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • F36 - International Economics - - International Finance - - - Financial Aspects of Economic Integration
    • F65 - International Economics - - Economic Impacts of Globalization - - - Finance
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0243. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.