IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Tests multiples simulés et tests de normalité basés sur plusieurs moments dans les modèles de régression

  • Dufour, Jean-Marie

    (Chaire de recherche du Canada en économétrie)

  • Farhat, Abdeljelil


  • Khalaf, Lynda


  • Dufour, Jean-Marie

    (Université de Montréal)

This paper illustrates the usefulness of resampling-based methods in the context of multiple (simultaneous) tests, with emphasis on econometric applications. Economic theory often suggests joint (or simultaneous) hypotheses on econometric models; consequently, the problem of evaluating joint rejection probabilities arises frequently in econometrics and statistics. In this regard, it is well known that ignoring the joint nature of multiple hypotheses may lead to serious test size distortions. Whereas most available multiple test techniques are conservative in the presence of non-independent statistics, our proposed tests provably achieve size control. Specifically, we use the Monte-Carlo (MC) test technique to extend several well known combination methods to the non-independent statistics contexts. We first cast the multiple test problem into a unified statistical framework which: (i) serves to show how exact global size control is achieved through the MC test method, and (ii) yields a number of superior tests previously not considered. Secondly, we provide a review of relevant available results. Finally, we illustrate the applicability of our proposed procedure to the problem of moments-based normality tests. For this problem, we propose an exact variant of Kiefer and Salmon’s (1983) test, and an alternative combination method which exploits the well known Fisher-Pearson procedure. Our simulation study reveals that the latter method seems to correct for the problem of test biases against platikurtic alternatives. In general, our results show that concrete and non-spurious power gains (over standard combination methods) can be achieved through our multiple Monte-Carlo test approach. Cet article illustre l’applicabilité des méthodes de rééchantillonnage dans le cadre des tests multiples (simultanés), pour divers problèmes économétriques. Les hypothèses simultanées sont une conséquence habituelle de la théorie économique, de sorte que le contrôle de la probabilité de rejet de combinaisons de tests est un problème que l’on rencontre fréquemment dans divers contextes économétriques et statistiques. À ce sujet, on sait que le fait d’ignorer le caractère conjoint des hypothèses multiples peut faire en sorte que le niveau de la procédure globale dépasse considérablement le niveau désiré. Alors que la plupart des méthodes d’inférence multiple sont conservatrices en présence de statistiques non indépendantes, les tests que nous proposons visent à contrôler exactement le niveau de signification. Pour ce faire, nous considérons des critères de test combinés proposés initialement pour des statistiques indépendantes. En appliquant la méthode des tests de Monte-Carlo, nous montrons comment ces méthodes de combinaison de tests peuvent s’appliquer à de tels cas, sans recours à des approximations asymptotiques. Après avoir passé en revue les résultats antérieurs sur ce sujet, nous montrons comment une telle méthodologie peut être utilisée pour construire des tests de normalité basés sur plusieurs moments pour les erreurs de modèles de régression linéaires. Pour ce problème, nous proposons une généralisation valide à distance finie du test asymptotique proposé par Kiefer et Salmon (1983) ainsi que des tests combinés suivant les méthodes de Tippett et de Pearson-Fisher. Nous observons empiriquement que les procédures de test corrigées par la méthode des tests de Monte-Carlo ne souffrent pas du problème de biais (ou sous-rejet) souvent rapporté dans cette littérature – notamment contre les lois platikurtiques – et permettent des gains sensibles de puissance par rapport aux méthodes combinées usuelles.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Article provided by Société Canadienne de Science Economique in its journal L'Actualité économique.

Volume (Year): 80 (2004)
Issue (Month): 2 (Juin-Septembre)
Pages: 501-522

in new window

Handle: RePEc:ris:actuec:v:80:y:2004:i:2:p:501-522
Contact details of provider: Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Donald W.K. Andrews & Werner Ploberger, 1992. "Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative," Cowles Foundation Discussion Papers 1015, Cowles Foundation for Research in Economics, Yale University.
  2. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:80:y:2004:i:2:p:501-522. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruce Shearer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.