IDEAS home Printed from
   My bibliography  Save this article

On a Class of Alpha-stable Distributions and Its Applications in Estimating Market Risk


  • Daniel Traian Pele
  • Vasile Nicolae Stanciulescu


This paper uses a straightforward application of alpha-stable distributions for Romanian Stock Market, showing how a relatively simple implementation in the real world of a complex mathematical tool can be much more reliable in risk management than the classical Gaussian or log-normal distributions. In this paper we use a SAS macro for estimating the parameters of an alpha-stable distribution, using the time-series regression method from Kogon and Williams (1998). Using the Fast Fourier Transform, we estimate the probability density function, the cumulative distribution function and consequently, the VaR (99.5%) and TVaR (99%). For numerical illustration we are using daily logreturns of the BET Index; the measures of market risk, estimated on rolling windows using alpha-stable distributions and Gaussian distribution, are then compared to the actual logreturns of the BET Index. Numerical experiments show that using alpha-stable distributions for estimating VaR and TVaR can be a better alternative for managing the risk of financial assets.

Suggested Citation

  • Daniel Traian Pele & Vasile Nicolae Stanciulescu, 2015. "On a Class of Alpha-stable Distributions and Its Applications in Estimating Market Risk," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 7(2), pages 007-015, December.
  • Handle: RePEc:rfb:journl:v:07:y:2015:i:2:p:007-015

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    1. Rafal Weron, 1996. "Correction to: "On the Chambers-Mallows-Stuck Method for Simulating Skewed Stable Random Variables"," HSC Research Reports HSC/96/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Szymon Borak & Wolfgang Härdle & Rafal Weron, 2005. "Stable Distributions," SFB 649 Discussion Papers SFB649DP2005-008, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Weron, Rafal, 1996. "On the Chambers-Mallows-Stuck method for simulating skewed stable random variables," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 165-171, June.
    4. Szymon Borak & Rafal Weron, 2010. "STABLEREGKW: MATLAB function to estimate stable distribution parameters using the regression method of Kogon and Williams," Statistical Software Components M429004, Boston College Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    2. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    3. Furrer, Hansjorg & Michna, Zbigniew & Weron, Aleksander, 1997. "Stable Lévy motion approximation in collective risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 20(2), pages 97-114, September.
    4. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    5. J.-F. Chamayou, 2001. "Pseudo random numbers for the Landau and Vavilov distributions," Computational Statistics, Springer, vol. 16(1), pages 131-152, March.
    6. Luc Devroye & Lancelot James, 2014. "On simulation and properties of the stable law," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 307-343, August.
    7. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    8. John C. Frain, 2007. "Small sample power of tests of normality when the alternative is an alpha-stable distribution," Trinity Economics Papers tep0207, Trinity College Dublin, Department of Economics.
    9. Chronis, George A., 2016. "Modelling the extreme variability of the US Consumer Price Index inflation with a stable non-symmetric distribution," Economic Modelling, Elsevier, vol. 59(C), pages 271-277.
    10. Taufer, Emanuele, 2015. "On the empirical process of strongly dependent stable random variables: asymptotic properties, simulation and applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 262-271.
    11. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    12. Guarcello, C., 2021. "Lévy noise effects on Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    13. Guo, Yongfeng & Wang, Linjie & Wei, Fang & Tan, Jianguo, 2019. "Dynamical behavior of simplified FitzHugh-Nagumo neural system driven by Lévy noise and Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 118-126.
    14. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    15. Szymon Borak & Adam Misiorek & Rafał Weron, 2010. "Models for Heavy-tailed Asset Returns," SFB 649 Discussion Papers SFB649DP2010-049, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    17. Szczurek, Andrzej & Maciejewska, Monika & Wyłomańska, Agnieszka & Sikora, Grzegorz & Balcerek, Michał & Teuerle, Marek, 2016. "Discrimination of particulate matter emission sources using stochastic methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 452-466.
    18. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    19. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    20. Parrini, Alessandro, 2012. "Indirect estimation of GARCH models with alpha-stable innovations," MPRA Paper 38544, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfb:journl:v:07:y:2015:i:2:p:007-015. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tatu Lucian (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.