IDEAS home Printed from
   My bibliography  Save this article

Time Series Forecasting in Stock Trading Markets: The Turning Point Curiosity


  • Edward J. Lusk

    (School of Business and Economics, State University of New York (SUNY) at Plattsburgh, Plattsburgh, NY, USA)


General Context Univariate Time Series Models [TSM] use only a Panel of historical data to produce forecasts. The tacit belief in using TSM is that the past information portends the future of the longitudinal data-stream. This is likely in certain cases such as strictly Ergodic Panel segments of sufficient size in the overall Panel. A question of interest is: Is the success of TSM in these contexts generalizable? The test of this question used a Litmus-Test design to examine the performance profile of TSM for a longitudinal time series the last point of which is a Turning Point [TP]. Specifically, the inference measurewill use the Relative Absolute Error [RAE] of the TSM tested over three forecasting horizons. In this testing, five TSM configurations were employed; the TPs are identified using a fixed screening filter applied to randomly selected firm Panels actively traded on the S&P500 from 2005 through 2013. There is no evidence that any of the five TSM outperformed the RW model which is incidentally the TP. The impact of these results is that one cannot assume that the effectiveness of TSM generalizes to all domains—in particular—forecasting after TPs that seems to be a Domain Lacuna where the effectiveness of TSM will be compromised Key Words:Domain Lacuna; Time Series Models;TurningPoint;Panels; Random Walk

Suggested Citation

  • Edward J. Lusk, 2019. "Time Series Forecasting in Stock Trading Markets: The Turning Point Curiosity," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(4), pages 01-16, July.
  • Handle: RePEc:rbs:ijbrss:v:8:y:2019:i:4:p:01-16

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    2. Adya, Monica, 2000. "Corrections to rule-based forecasting: findings from a replication," International Journal of Forecasting, Elsevier, vol. 16(1), pages 125-127.
    3. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbs:ijbrss:v:8:y:2019:i:4:p:01-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Umit Hacioglu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.