Author
Listed:
- Sunil Kumar
- Sudeep Varshney
- Usha Jain
- Prashant Johri
- Abdulaziz S Almazyad
- Ali Wagdy Mohamed
- Mehdi Hosseinzadeh
- Mohammad Shokouhifar
Abstract
Outlier detection is essential for identifying unusual patterns or observations that significantly deviate from the normal behavior of a dataset. With the rapid growth of data science, the prevalence of anomalies and outliers has increased, which can disrupt system modeling and parameter estimation, leading to inaccurate results. Recently, deep learning-based outlier detection methods have gained significant attention, but their performance is often limited by challenges in parameter selection and the nearest neighbor search. To overcome these limitations, we propose a three-stage Efficient Outlier Detection Approach (named EODA), that not only detects outliers with high accuracy but also emphasizes dataset characteristics. In the first stage, we apply a feature selection algorithm based on the Boruta method and Random Forest to reduce the data size by selecting the most relevant attributes and calculating the highest Z-score of shadow features. In the second stage, we improve the K-nearest neighbors algorithm to enhance the accuracy of nearest neighbor identification in the clustering phase. Finally, the third stage efficiently identifies the most significant outliers within clustered datasets. We evaluate the proposed EODA algorithm across eight UCI machine-learning repository datasets. The results demonstrate the effectiveness of our EODA approach, achieving a Precision of 63.07%, Recall of 82.49%, and an F1-Score of 64.53%, outperforming the existing techniques in the field.
Suggested Citation
Sunil Kumar & Sudeep Varshney & Usha Jain & Prashant Johri & Abdulaziz S Almazyad & Ali Wagdy Mohamed & Mehdi Hosseinzadeh & Mohammad Shokouhifar, 2025.
"EODA: A three-stage efficient outlier detection approach using Boruta-RF feature selection and enhanced KNN-based clustering algorithm,"
PLOS ONE, Public Library of Science, vol. 20(5), pages 1-25, May.
Handle:
RePEc:plo:pone00:0322738
DOI: 10.1371/journal.pone.0322738
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.