IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0317514.html
   My bibliography  Save this article

Towards sustainable architecture: Enhancing green building energy consumption prediction with integrated variational autoencoders and self-attentive gated recurrent units from multifaceted datasets

Author

Listed:
  • Qing Zeng
  • Fang Peng
  • Xiaojuan Han

Abstract

Global awareness of sustainable development has heightened interest in green buildings as a key strategy for reducing energy consumption and carbon emissions. Accurate prediction of energy consumption plays a vital role in developing effective energy management and conservation strategies. This study addresses these challenges by proposing an advanced deep learning framework that integrates Time-Dependent Variational Autoencoder (TD-VAE) with Adaptive Gated Self-Attention GRU (AGSA-GRU). The framework incorporates self-attention mechanisms and Multi-Task Learning (MTL) strategies to capture long-term dependencies and complex patterns in energy consumption time series data, while simultaneously optimizing prediction accuracy and anomaly detection. Experiments on two public green building energy consumption datasets validate the effectiveness of our proposed approach. Our method achieves a prediction accuracy of 93.2%, significantly outperforming traditional deep learning methods and existing techniques. ROC curve analysis demonstrates our model’s robustness, achieving an Area Under the Curve (AUC) of 0.91 while maintaining a low false positive rate (FPR) and high true positive rate (TPR). This study presents an efficient solution for green building energy consumption prediction, contributing significantly to energy conservation, emission reduction, and sustainable development in the construction industry.

Suggested Citation

  • Qing Zeng & Fang Peng & Xiaojuan Han, 2025. "Towards sustainable architecture: Enhancing green building energy consumption prediction with integrated variational autoencoders and self-attentive gated recurrent units from multifaceted datasets," PLOS ONE, Public Library of Science, vol. 20(4), pages 1-29, April.
  • Handle: RePEc:plo:pone00:0317514
    DOI: 10.1371/journal.pone.0317514
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317514
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0317514&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0317514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    2. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    3. Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
    4. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    5. Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
    6. Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
    7. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    9. Jicheng Liu & Yu Yin, 2022. "Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China," Energies, MDPI, vol. 15(3), pages 1-23, February.
    10. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    11. M. C. Pegalajar & L. G. B. Ruiz, 2022. "Time Series Forecasting for Energy Consumption," Energies, MDPI, vol. 15(3), pages 1-3, January.
    12. Melillo, Andreas & Durrer, Roman & Worlitschek, Jörg & Schütz, Philipp, 2020. "First results of remote building characterisation based on smart meter measurement data," Energy, Elsevier, vol. 200(C).
    13. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    14. Łukasz Guz & Dariusz Gaweł & Tomasz Cholewa & Alicja Siuta-Olcha & Martyna Bocian & Mariia Liubarska, 2025. "Forecasting Heat Power Demand in Retrofitted Residential Buildings," Energies, MDPI, vol. 18(3), pages 1-26, February.
    15. Kuru Merve & Calis Gulben, 2020. "Application of time series models for heating degree day forecasting," Organization, Technology and Management in Construction, Sciendo, vol. 12(1), pages 2137-2146, January.
    16. Mahmoud Elkazaz & Mark Sumner & David Thomas, 2019. "Real-Time Energy Management for a Small Scale PV-Battery Microgrid: Modeling, Design, and Experimental Verification," Energies, MDPI, vol. 12(14), pages 1-26, July.
    17. Eslam Mohammed Abdelkader & Nehal Elshaboury & Abobakr Al-Sakkaf, 2022. "On the Utilization of an Ensemble of Meta-Heuristics for Simulating Energy Consumption in Buildings," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global Scientific Publishing, vol. 13(1), pages 1-31, January.
    18. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    19. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    20. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.