IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0316288.html
   My bibliography  Save this article

The dependency structure of international commodity and stock markets after the Russia-Ukraine war

Author

Listed:
  • Cheng Zhang
  • Shuo Liu
  • Mimi Qin
  • Bin Gao

Abstract

In recent years, the international community has witnessed many crisis events, and the Russia-Ukraine war, which broke out on 24th February 2022, has increased international policy uncertainty and impacted the current world commodity and financial markets. Thus, we try to capture how the Russia-Ukraine war has affected the correlation structure of international commodity and stock markets. We study six groups of commodity daily returns and one group of stock daily returns and select the sample from 24th February 2022 to 1st June 2022 as the sample during the Russia-Ukraine war; in addition, we select the sample from 1st December 2019 to 31st December 2020 as the sample during COVID-19 control group, and the sample from 1st January 2014 to 31st December 2017 as the non-extreme event control group, to explore the correlation structure of international commodity and stock markets before the war, and to compare and uncover the impact of the uncertain event of the Russia-Ukraine war on the commodity and stock markets. In this paper, the marginal density function of each series is constructed using the ARMA-GARCH-std method, and the R-Vine copula model is built based on the marginal density function to analyze the correlation relationship between each market. From the Tree1 of the Vine copula, it is found that crude oil becomes the core connecting each commodity market and the stock market during the Russia-Ukraine war. The price fluctuations of crude oil may be contagious to agricultural and precious metal markets in the same direction, while the stock market price fluctuations are inversely correlated with commodity markets. Comparison with the selected control group sample reveals that the Russia-Ukraine war increases the correlation between the markets and enhances the possibility of risk transmission. The core of the correlation structure shifts from agricultural commodities and precious metals to crude oil after the Russia-Ukraine war.

Suggested Citation

  • Cheng Zhang & Shuo Liu & Mimi Qin & Bin Gao, 2025. "The dependency structure of international commodity and stock markets after the Russia-Ukraine war," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0316288
    DOI: 10.1371/journal.pone.0316288
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316288
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0316288&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0316288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jain, Anshul & Biswal, P.C., 2016. "Dynamic linkages among oil price, gold price, exchange rate, and stock market in India," Resources Policy, Elsevier, vol. 49(C), pages 179-185.
    2. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    3. Akbar, Muhammad & Iqbal, Farhan & Noor, Farzana, 2019. "Bayesian analysis of dynamic linkages among gold price, stock prices, exchange rate and interest rate in Pakistan," Resources Policy, Elsevier, vol. 62(C), pages 154-164.
    4. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
    2. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    3. Freddy Ronalde Camacho-Villagomez & Yanina Shegia Bajaña-Villagomez & Andrea Johanna Rodríguez-Bustos, 2024. "Estimating the Impact of Oil Price Volatility on the Ecuadorian Economy: A MIDAS Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 371-376, July.
    4. Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
    5. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    6. Apergis, Nicholas & Payne, James E., 2017. "Volatility Modeling of U.S. Metropolitan Retail Gasoline Prices: An Empirical Note," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 48(2), September.
    7. Leticia Castaño & José E. Farinós & Ana M. Ibáñez, 2024. "The stock market reaction to political and economic changes: the Spanish case," Review of Economic Design, Springer;Society for Economic Design, vol. 28(3), pages 593-630, September.
    8. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    9. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    10. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Marco C. Sammon, 2021. "What Triggers Stock Market Jumps?," NBER Working Papers 28687, National Bureau of Economic Research, Inc.
    11. Chen, Yufeng & Xu, Jing & Hu, May, 2022. "Asymmetric volatility spillovers and dynamic correlations between crude oil price, exchange rate and gold price in BRICS," Resources Policy, Elsevier, vol. 78(C).
    12. Cheng, Sheng & Deng, MingJie & Liang, Ruibin & Cao, Yan, 2023. "Asymmetric volatility spillover among global oil, gold, and Chinese sectors in the presence of major emergencies," Resources Policy, Elsevier, vol. 82(C).
    13. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    14. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    15. Parminder Kaur & Ravi Singla, 2022. "Modelling and forecasting Nifty 50 using hybrid ARIMA-GARCH Model," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 14(1), pages 7-20, June.
    16. Kaminska, Iryna & Roberts-Sklar, Matt, 2018. "Volatility in equity markets and monetary policy rate uncertainty," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 68-83.
    17. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    18. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.
    19. Mokni, Khaled & Mansouri, Faysal, 2017. "Conditional dependence between international stock markets: A long memory GARCH-copula model approach," Journal of Multinational Financial Management, Elsevier, vol. 42, pages 116-131.
    20. Tarek Bouazizi & Zouhaier Hadhek & Fatma Mrad & Mosbah Lafi, 2021. "Changes in Demand for Crude Oil and its Correlation with Crude Oil and Stock Market Returns Volatilities: Evidence from Three Asian Oil Importing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 27-43.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0316288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.