IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0314080.html
   My bibliography  Save this article

Estimation of stationary and non-stationary moving average processes in the correlation domain

Author

Listed:
  • Martin Dodek
  • Eva Miklovičová

Abstract

This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters. Unlike conventional methods, this approach uses the Newton-Raphson and Levenberg–Marquardt algorithms to efficiently find the solution. A key finding is the demonstration of multiple symmetrical solutions and the provision of necessary conditions for solution feasibility. In the non-stationary case, the estimation complexity is notably reduced, resulting in a triangular system of linear equations solvable by backward substitution. For online parameter estimation of non-stationary processes, a new recursive formula is introduced to update the sample autocorrelation function, integrating exponential forgetting of older samples to enable parameter adaptation. Numerical experiments confirm the method’s effectiveness and evaluate its performance compared to existing techniques.

Suggested Citation

  • Martin Dodek & Eva Miklovičová, 2025. "Estimation of stationary and non-stationary moving average processes in the correlation domain," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-35, January.
  • Handle: RePEc:plo:pone00:0314080
    DOI: 10.1371/journal.pone.0314080
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314080
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314080&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0314080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naliniprava Tripathy, 2017. "Forecasting Gold Price with Auto Regressive Integrated Moving Average Model," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 324-329.
    2. Davidson, James E. H., 1981. "Problems with the estimation of moving average processes," Journal of Econometrics, Elsevier, vol. 16(3), pages 295-310, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cush Ngonzo Luwesi & Joy Apiyo Obando & Chris Allan Shisanya, 2017. "The Impact of a Warming Micro‐Climate on Muooni Farmers of Kenya," Agriculture, MDPI, vol. 7(3), pages 1-21, March.
    2. Krishnan, R. & Sen, Kunal, 1995. "Measuring persistence in industrial output: The Indian case," Journal of Development Economics, Elsevier, vol. 48(1), pages 25-41, October.
    3. Kyriakopoulou, Dimitra & Demos, Antonis, 2010. "Edgeworth and Moment Approximations: The Case of MM and QML Estimators for the MA (1) Models," MPRA Paper 122393, University Library of Munich, Germany.
    4. Devendra Joshi & Premkumar Chithaluru & Divya Anand & Fahima Hajjej & Kapil Aggarwal & Vanessa Yelamos Torres & Ernesto Bautista Thompson, 2023. "RETRACTED: An Evolutionary Technique for Building Neural Network Models for Predicting Metal Prices," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    5. John Y. Campbell & N. Gregory Mankiw, 1987. "Are Output Fluctuations Transitory?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 857-880.
    6. Emili Valdero Mora, 2002. "Linear least squares estimation of the first order moving average parameter," Working Papers in Economics 80, Universitat de Barcelona. Espai de Recerca en Economia.
    7. Vougas, Dimitrios V., 2008. "New exact ML estimation and inference for a Gaussian MA(1) process," Economics Letters, Elsevier, vol. 99(1), pages 172-176, April.
    8. Kim, Chang-Jin & Kim, Jaeho, 2013. "The `Pile-up Problem' in Trend-Cycle Decomposition of Real GDP: Classical and Bayesian Perspectives," MPRA Paper 51118, University Library of Munich, Germany.
    9. Khan, Asad Ul Islam & Shahbaz, Muhammad & Napari, Ayuba, 2023. "Subsample stability, change detection and dynamics of oil and metal markets: A recursive approach," Resources Policy, Elsevier, vol. 83(C).
    10. Sam Strong & Siew Ping Tan, 1991. "The Australian Business Cycle: Its Definition and Existence," The Economic Record, The Economic Society of Australia, vol. 67(2), pages 115-125, June.
    11. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    12. Yamane, Linus, 1998. "The insider-outsider model and Japanese labor unions," Japan and the World Economy, Elsevier, vol. 10(2), pages 157-171, April.
    13. Quarm, Richmond Sam & Busharads, Mohamed Osman Elamin & Institute of Research, Asian, 2020. "Modeling and Forecasting Gold Prices," OSF Preprints u5mz6, Center for Open Science.
    14. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2022. "Gold price forecasting using multivariate stochastic model," Resources Policy, Elsevier, vol. 76(C).
    15. Pollock, D.S.G., 1991. "On the criterion function for arma estimation," Serie Research Memoranda 0074, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Ralph D Snyder, 2005. "A Pedant's Approach to Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 5/05, Monash University, Department of Econometrics and Business Statistics.
    17. Mutele, Litshedzani & Carranza, Emmanuel John M., 2024. "Statistical analysis of gold production in South Africa using ARIMA, VAR and ARNN modelling techniques: Extrapolating future gold production, Resources–Reserves depletion, and Implication on South Afr," Resources Policy, Elsevier, vol. 93(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0314080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.