IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0309930.html
   My bibliography  Save this article

Ecological cooperative merging control of heterogeneous electric vehicle platoons

Author

Listed:
  • Tian Luo
  • Xiaobin Liu

Abstract

Vehicle platooning improves energy savings via vehicle-to-vehicle (V2V) communication. Ecological cooperative adaptive cruise control (Eco-CACC) is implemented in platoons for merging task by using regrouped platoon models. The merging positions are selected in the middle and tail of an original platoon with a two-vehicle sub-platoon. The distributed nonlinear model predictive controller based on signal temporal logic (DNMPC-STL) approach is developed to model the Eco-CACC merging strategy. The performance of the Eco-CACC merging strategy is modeled by objective control for a predecessor-leader following (PLF) topology. The results demonstrate that merging positions located in the tail exhibit superior performance and can be used to improve stability, tracking performance, energy consumption efficiency and SOC of battery.

Suggested Citation

  • Tian Luo & Xiaobin Liu, 2024. "Ecological cooperative merging control of heterogeneous electric vehicle platoons," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-28, November.
  • Handle: RePEc:plo:pone00:0309930
    DOI: 10.1371/journal.pone.0309930
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309930
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0309930&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0309930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saeed Vasebi & Yeganeh M. Hayeri, 2021. "Collective Driving to Mitigate Climate Change: Collective-Adaptive Cruise Control," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    2. Ma, Fangwu & Yang, Yu & Wang, Jiawei & Liu, Zhenze & Li, Jinhang & Nie, Jiahong & Shen, Yucheng & Wu, Liang, 2019. "Predictive energy-saving optimization based on nonlinear model predictive control for cooperative connected vehicles platoon with V2V communication," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    2. Xin-Wei Li & Hong-Zhi Miao, 2023. "How to Incorporate Autonomous Vehicles into the Carbon Neutrality Framework of China: Legal and Policy Perspectives," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    3. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    5. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    7. Nie, Zifei & Farzaneh, Hooman, 2022. "Real-time dynamic predictive cruise control for enhancing eco-driving of electric vehicles, considering traffic constraints and signal phase and timing (SPaT) information, using artificial-neural-netw," Energy, Elsevier, vol. 241(C).
    8. Chengmei Wang & Yuchuan Du, 2022. "ELM-Based Non-Singular Fast Terminal Sliding Mode Control Strategy for Vehicle Platoon," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    9. Tian, Yang & Zhang, Yahui & Li, Hongmin & Gao, Jinwu & Swen, Austin & Wen, Guilin, 2023. "Optimal sizing and energy management of a novel dual-motor powertrain for electric vehicles," Energy, Elsevier, vol. 275(C).
    10. Li, Linheng & Wang, Can & Gan, Jing & Zhao, Yan & Qu, Xu & Ran, Bin, 2024. "Optimizing platoon safety through key node selection in pinning control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    11. Guo, Cong & Fu, Chunyun & Luo, Ronghua & Yang, Guanlong, 2022. "Energy-oriented car-following control for a front- and rear-independent-drive electric vehicle platoon," Energy, Elsevier, vol. 257(C).
    12. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. He, Z.C. & Kang, H. & Li, Eric & Zhou, E.L. & Cheng, H.T. & Huang, Y.Y., 2022. "Coordinated control of heterogeneous vehicle platoon stability and energy-saving control strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Alessia Musa & Michele Pipicelli & Matteo Spano & Francesco Tufano & Francesco De Nola & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul & Gianluca Toscano, 2021. "A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    15. Zifei Nie & Hooman Farzaneh, 2021. "Role of Model Predictive Control for Enhancing Eco-Driving of Electric Vehicles in Urban Transport System of Japan," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    16. Pan, Chaofeng & Huang, Aibao & Wang, Jian & Chen, Liao & Liang, Jun & Zhou, Weiqi & Wang, Limei & Yang, Jufeng, 2022. "Energy-optimal adaptive cruise control strategy for electric vehicles based on model predictive control," Energy, Elsevier, vol. 241(C).
    17. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    18. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Yan, Qi & Xiang, Changle, 2023. "Multiobjective optimization of longitudinal dynamics and energy management for HEVs based on nash bargaining game," Energy, Elsevier, vol. 262(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.