IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296810.html
   My bibliography  Save this article

Estimating household contact matrices structure from easily collectable metadata

Author

Listed:
  • Lorenzo Dall’Amico
  • Jackie Kleynhans
  • Laetitia Gauvin
  • Michele Tizzoni
  • Laura Ozella
  • Mvuyo Makhasi
  • Nicole Wolter
  • Brigitte Language
  • Ryan G Wagner
  • Cheryl Cohen
  • Stefano Tempia
  • Ciro Cattuto

Abstract

Contact matrices are a commonly adopted data representation, used to develop compartmental models for epidemic spreading, accounting for the contact heterogeneities across age groups. Their estimation, however, is generally time and effort consuming and model-driven strategies to quantify the contacts are often needed. In this article we focus on household contact matrices, describing the contacts among the members of a family and develop a parametric model to describe them. This model combines demographic and easily quantifiable survey-based data and is tested on high resolution proximity data collected in two sites in South Africa. Given its simplicity and interpretability, we expect our method to be easily applied to other contexts as well and we identify relevant questions that need to be addressed during the data collection procedure.

Suggested Citation

  • Lorenzo Dall’Amico & Jackie Kleynhans & Laetitia Gauvin & Michele Tizzoni & Laura Ozella & Mvuyo Makhasi & Nicole Wolter & Brigitte Language & Ryan G Wagner & Cheryl Cohen & Stefano Tempia & Ciro Catt, 2024. "Estimating household contact matrices structure from easily collectable metadata," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-13, March.
  • Handle: RePEc:plo:pone00:0296810
    DOI: 10.1371/journal.pone.0296810
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296810
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296810&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296810?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. Cencetti & G. Santin & A. Longa & E. Pigani & A. Barrat & C. Cattuto & S. Lehmann & M. Salathé & B. Lepri, 2021. "Digital proximity tracing on empirical contact networks for pandemic control," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    3. Albert-László Barabási, 2005. "The origin of bursts and heavy tails in human dynamics," Nature, Nature, vol. 435(7039), pages 207-211, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapio Schneider & Oliver R A Dunbar & Jinlong Wu & Lucas Böttcher & Dmitry Burov & Alfredo Garbuno-Inigo & Gregory L Wagner & Sen Pei & Chiara Daraio & Raffaele Ferrari & Jeffrey Shaman, 2022. "Epidemic management and control through risk-dependent individual contact interventions," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-32, June.
    2. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    3. Marina Antillón & Xiao Li & Lander Willem & Joke Bilcke & RESCEU investigators & Mark Jit & Philippe Beutels, 2023. "The age profile of respiratory syncytial virus burden in preschool children of low- and middle-income countries: A semi-parametric, meta-regression approach," PLOS Medicine, Public Library of Science, vol. 20(7), pages 1-25, July.
    4. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    8. repec:plo:pone00:0045113 is not listed on IDEAS
    9. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    10. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    11. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    12. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    13. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    14. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    15. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    16. Obianuju Genevieve Aguolu & Moses Chapa Kiti & Kristin Nelson & Carol Y Liu & Maria Sundaram & Sergio Gramacho & Samuel Jenness & Alessia Melegaro & Charfudin Sacoor & Azucena Bardaji & Ivalda Macicam, 2024. "Comprehensive profiling of social mixing patterns in resource poor countries: A mixed methods research protocol," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-18, June.
    17. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    18. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    19. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    20. Pirayesh, Amir & Asadaraghi, Alireza & Mohammadi, Mehrdad & Siadat, Ali & Battaïa, Olga, 2025. "A dynamic optimization model for vaccine allocation with age considerations: A study inspired by the COVID-19 pandemic," International Journal of Production Economics, Elsevier, vol. 280(C).
    21. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.