IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296107.html
   My bibliography  Save this article

Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction

Author

Listed:
  • Raafat M Munshi

Abstract

Cervical cancer remains a leading cause of female mortality, particularly in developing regions, underscoring the critical need for early detection and intervention guided by skilled medical professionals. While Pap smear images serve as valuable diagnostic tools, many available datasets for automated cervical cancer detection contain missing data, posing challenges for machine learning models’ efficacy. To address these hurdles, this study presents an automated system adept at managing missing information using ADASYN characteristics, resulting in exceptional accuracy. The proposed methodology integrates a voting classifier model harnessing the predictive capacity of three distinct machine learning models. It further incorporates SVM Imputer and ADASYN up-sampled features to mitigate missing value concerns, while leveraging CNN-generated features to augment the model’s capabilities. Notably, this model achieves remarkable performance metrics, boasting a 99.99% accuracy, precision, recall, and F1 score. A comprehensive comparative analysis evaluates the proposed model against various machine learning algorithms across four scenarios: original dataset usage, SVM imputation, ADASYN feature utilization, and CNN-generated features. Results indicate the superior efficacy of the proposed model over existing state-of-the-art techniques. This research not only introduces a novel approach but also offers actionable suggestions for refining automated cervical cancer detection systems. Its impact extends to benefiting medical practitioners by enabling earlier detection and improved patient care. Furthermore, the study’s findings have substantial societal implications, potentially reducing the burden of cervical cancer through enhanced diagnostic accuracy and timely intervention.

Suggested Citation

  • Raafat M Munshi, 2024. "Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0296107
    DOI: 10.1371/journal.pone.0296107
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296107
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296107&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Publisher Correction: Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    2. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LLC, vol. 20(1), pages 3-29, March.
    3. Jonathan G. Richens & Ciarán M. Lee & Saurabh Johri, 2020. "Improving the accuracy of medical diagnosis with causal machine learning," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Alexander Lavin & Ciarán M. Gilligan-Lee & Alessya Visnjic & Siddha Ganju & Dava Newman & Sujoy Ganguly & Danny Lange & Atílím Güneş Baydin & Amit Sharma & Adam Gibson & Stephan Zheng & Eric P. Xing &, 2022. "Technology readiness levels for machine learning systems," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Katerina Rigana & Ernst C. Wit & Samantha Cook, 2024. "Navigating Market Turbulence: Insights from Causal Network Contagion Value at Risk," Papers 2402.06032, arXiv.org.
    4. Shilin Zheng & Mengdan Li, 2022. "Does aggressive tweeting by the government help to control the COVID‐19 outbreak? Evidence from China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(4), pages 691-713, October.
    5. Elisa Ferrari & Luna Gargani & Greta Barbieri & Lorenzo Ghiadoni & Francesco Faita & Davide Bacciu, 2022. "A causal learning framework for the analysis and interpretation of COVID-19 clinical data," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-21, May.
    6. Bangfeng Wang & Yiwei Li & Mengfan Zhou & Yulong Han & Mingyu Zhang & Zhaolong Gao & Zetai Liu & Peng Chen & Wei Du & Xingcai Zhang & Xiaojun Feng & Bi-Feng Liu, 2023. "Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Forney Andrew & Mueller Scott, 2022. "Causal inference in AI education: A primer," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 141-173, January.
    8. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
    9. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
    10. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
    11. Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CEPR Discussion Papers 18543, C.E.P.R. Discussion Papers.
    12. Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
    13. Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
    14. Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
    15. Murat Aslan & Onder Ozgur, 2024. "Financial dollarization and its effects on inflation and output in Turkey: a machine learning approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5777-5804, December.
    16. Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
    17. Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
    18. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
    19. Jialing Zhang & Zhanxu Chen & An Wang & Zhenzhang Li & Wei Wan, 2023. "Intelligent Personalized Lighting Control System for Residents," Sustainability, MDPI, vol. 15(21), pages 1-12, October.
    20. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.